Giải bài 6.9 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức >
Rút gọn các phân thức sau:
Đề bài
Rút gọn các phân thức sau:
a) \(\frac{{5{{x}} + 10}}{{25{{{x}}^2} + 50}}\)
b) \(\frac{{45{{x}}\left( {3 - x} \right)}}{{15{{x}}{{\left( {x - 3} \right)}^3}}}\)
c) \(\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc rút gọn hai phân thức
Lời giải chi tiết
a) \(\frac{{5{{x}} + 10}}{{25{{{x}}^2} + 50}} \) \(= \frac{{5\left( {x + 2} \right)}}{{25\left( {{x^2} + 2} \right)}} \) \(= \frac{{x + 2}}{{5\left( {{x^2} + 2} \right)}}\)
b) \(\frac{{45{{x}}\left( {3 - x} \right)}}{{15{{x}}{{\left( {x - 3} \right)}^3}}} \) \(= \frac{{3\left( {3 - x} \right)}}{{{{\left( {x - 3} \right)}^3}}}\) \(=\frac{-3(x-3)}{(x-3)^3}\) \(=\frac{-3}{(x-3)^2}\)
c) \(\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}} \)
\(= \frac{{\left( {{x^2} - 1} \right)\left( {{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)
\(= \frac{{\left( {x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)
\(= \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} - x + 1}}\)
- Giải bài 6.10 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.11 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.12 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.13 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.14 trang 12 SGK Toán 8 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức