Giải bài 6.9 trang 10 sách bài tập toán 9 - Kết nối tri thức tập 2


Giải các phương trình sau bằng cách đưa về dạng tích: a) ({x^2} + 5x = 0); b) ({x^2} - 16 = 0); c) ({x^2} - 10x + 25 = 0); d) ({x^2} + 8x + 12 = 0).

Đề bài

Giải các phương trình sau bằng cách đưa về dạng tích:

a) \({x^2} + 5x = 0\);

b) \({x^2} - 16 = 0\);

c) \({x^2} - 10x + 25 = 0\);

d) \({x^2} + 8x + 12 = 0\).

Phương pháp giải - Xem chi tiết

Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

Lời giải chi tiết

a) \({x^2} + 5x = 0\)

\(x\left( {x + 5} \right) = 0\)

\(x = 0\) hoặc \(x + 5 = 0\)

\(x = 0\) hoặc \(x =  - 5\)

Vậy phương trình có hai nghiệm: \({x_1} = 0\); \(x =  - 5\).

b) \({x^2} - 16 = 0\)

\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)

\(x - 4 = 0\) hoặc \(x + 4 = 0\)

\(x = 4\) hoặc \(x =  - 4\)

Vậy phương trình có hai nghiệm: \(x = 4\); \(x =  - 4\).

c) \({x^2} - 10x + 25 = 0\)

\({x^2} - 2.x.5 + {5^2} = 0\)

\({\left( {x - 5} \right)^2} = 0\)

\(x - 5 = 0\)

\(x = 5\)

Vậy phương trình đã cho có nghiệm \(x = 5\).

d) \({x^2} + 8x + 12 = 0\)

\({x^2} + 2x + 6x + 12 = 0\)

\(x\left( {x + 2} \right) + 6\left( {x + 2} \right) = 0\)

\(\left( {x + 2} \right)\left( {x + 6} \right) = 0\)

\(x + 2 = 0\) hoặc \(x + 6 = 0\)

\(x =  - 2\) hoặc \(x =  - 6\)

Vậy phương trình có hai nghiệm: \(x =  - 2\); \(x =  - 6\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí