Giải bài 6.29 trang 22 SGK Toán 8 tập 2 - Kết nối tri thức >
Cho hai phân thức
Đề bài
Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)
a) Rút gọn P và Q
b) Sử dụng kết quả câu a, Tính P.Q và P:Q
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Rút gọn phân thức bằng cách chia cho nhân tử chung của cả tử và mẫu của mỗi phân thức
- Tính P. Q và P : Q theo quy tắc nhân chia hai phân thức
Lời giải chi tiết
a) Ta có: \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}} = \frac{{{{\left( {x + 3} \right)}^2}}}{{x\left( {x + 3} \right)}} = \frac{{x + 3}}{x}\)
\(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}} = \frac{{x\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{x}{{x - 3}}\)
b) Ta có:
\(P.Q = \frac{{x + 3}}{x}.\frac{x}{{x - 3}} = \frac{{\left( {x + 3} \right).x}}{{x.\left( {x - 3} \right)}} = \frac{{x + 3}}{{x - 3}}\)
\(P:Q = \frac{{x + 3}}{x}:\frac{x}{{x - 3}} = \frac{{x + 3}}{x}.\frac{{x - 3}}{x} = \frac{{{x^2} - 9}}{{{x^2}}}\)
- Giải bài 6.30 trang 22 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.28 trang 22 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.27 trang 22 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 6.26 trang 22 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải mục 2 trang 21, 22 SGK Toán 8 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức