Giải bài 4.6 trang 67 SGK Toán 7 tập 1 - Kết nối tri thức>
Cho Hình 4.20, biết AB = CB,AD = CD,
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
Cho Hình 4.20, biết \(AB = CB, AD = CD,\widehat{DAB} = {90^\circ },\widehat{BDC} = {30^\circ }\)
a) Chứng minh rằng \(\Delta ABD = \Delta CBD\).
b) Tính \(\widehat {ABC}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh hai tam giác bằng nhau bằng cách chỉ ra 3 cặp cạnh bằng nhau (c.c.c).
b) \(\widehat {ABC} = \widehat {ABD} + \widehat {CBD}\)
Lời giải chi tiết
a) Xét \(\Delta ABD\) và \(\Delta CBD\)có:
DA=DC(gt)
BD chung
BA=BC
Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)
b) Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)
Theo định lí tổng ba góc trong tam giác BCD, ta có:
\(\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\)
\({90^o} + {30^o} + \widehat {DBC} = {180^o}\)
Suy ra \(\widehat {DBC} = {60^o}\)
Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) (2 góc tương ứng)
Suy ra \(\widehat {ABD} = \widehat {CBD} = {60^o}\)
Do đó \(\widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)
- Giải bài 4.5 trang 67 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 4.4 trang 67 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải mục 2 trang 65, 66, 67 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải mục 1 trang 63, 64, 65 SGK Toán 7 tập 1 - Kết nối tri thức
- Lý thuyết Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác SGK Toán 7 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2