Giải bài 4 trang 87 SGK Toán 8 tập 1– Chân trời sáng tạo


Cho tam giác

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) (\(AB < AC\). Gọi \(D\) là trung điểm của \(BC\). Vẽ \(DE\) // \(AB\), vẽ \(DF\) // \(AC\) \((E \in AC\); \(F \in AB)\). Chứng minh rằng:

a) Tứ giác \(AEDF\) là hình chữ nhật

b) Tứ giác \(BFED\) là hình bình hành

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Áp dụng dấu hiệu nhận biết hình chữ nhật

b) Áp dụng dấu hiệu nhận biết hình bình hành

Lời giải chi tiết

a) Ta có:

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat {{\rm{BAC}}} = 90^\circ \)\(AB \bot AC\)

\(DE\) // \(AB\) ; \(DF\) // \(AC\)

Suy ra \(DE \bot AC;\;DF \bot AB\)

Suy ra \(\widehat {DEA} = \widehat {DFA} = 90^\circ \)

Tứ giác \(AEDF\)\(\widehat {BAC} = \widehat {DEA} = \widehat {DFA} = 90^\circ \) nên là hình chữ nhật

b) Vì \(AEDF\) là hình chữ nhật (cmt)

Suy ra \(AE = DF\); \(AF = DE\); \(AF\) // \(DE\); \(AE\) // \(DF\)

\(DE \bot AC;\;DF \bot AB\) (cmt)

Suy ra \(\widehat {DEC} = \widehat {BFD} = 90^\circ \)

Xét \(\Delta BFD\)\(\Delta DEC\) ta có:

\(\widehat {{\rm{BFD}}} = \widehat {{\rm{DEC}}} = 90^\circ \) (cmt)

\(BD = DC\) (gt)

\(\widehat {{\rm{FBD}}} = \widehat {{\rm{EDC}}}\) (do \(DE\) // \(BF\) )

Suy ra \(\Delta BFD = \Delta DEC\) (ch – gn)

Suy ra \(BF = DE\); \(DF = EC\) (hai cạnh tương tứng)

Xét tứ giác \(BFED\) ta có:

\(BF\) // \(DE\) (do \(AB\) // \(DE\))

\(BF = DE\) (cmt)

Suy ra \(BFED\) là hình bình hành


Bình chọn:
4.5 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí