Giải bài 26 trang 43 sách bài tập toán 9 - Cánh diều tập 1


a) Cho a, b, c là các số dương thoả mãn \(a < b\). Chứng minh: \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\). b) Áp dụng kết quả trên, hãy so sánh: \(M = \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\) và \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}}\)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

a) Cho a, b, c là các số dương thoả mãn \(a < b\). Chứng minh: \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\).

b) Áp dụng kết quả trên, hãy so sánh: \(M = \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\) và \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}}\)

Phương pháp giải - Xem chi tiết

Chứng minh hiệu \(\frac{{a + c}}{{b + c}} - \frac{a}{b} > 0.\)

Biến đổi \(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}} = \frac{{10\left( {{{10}^{2022}} + 1} \right)}}{{10\left( {{{10}^{2023}} + 1} \right)}} = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}}\).

Áp dụng kết quả câu a, ta được điều phải chứng minh.

Lời giải chi tiết

Xét hiệu \(\frac{{a + c}}{{b + c}} - \frac{a}{b} = \frac{{b\left( {a + c} \right) - a\left( {b + c} \right)}}{{b\left( {b + c} \right)}}\)\( = \frac{{ab + bc - ab - ac}}{{b\left( {b + c} \right)}} = \frac{{bc - ac}}{{b\left( {b + c} \right)}} = \frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\)

Do a, b, c là các số dương  và \(a < b\) nên \(b - a > 0\), \(\left( {b + c} \right)\) suy ra \(\frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\), do đó \(\frac{{a + c}}{{b + c}} - \frac{a}{b}\)

Hay \(\frac{{a + c}}{{b + c}} > \frac{a}{b}\).

\(N = \frac{{{{10}^{2022}} + 1}}{{{{10}^{2023}} + 1}} = \frac{{10\left( {{{10}^{2022}} + 1} \right)}}{{10\left( {{{10}^{2023}} + 1} \right)}} = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}}\)

Theo câu a, ta có \(N = \frac{{\left( {{{10}^{2023}} + 1} \right) + 9}}{{\left( {{{10}^{2024}} + 1} \right) + 9}} > \frac{{{{10}^{2023}} + 1}}{{{{10}^{2024}} + 1}}\)

Do đó \(M < N.\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí