Bài 26 trang 41 SBT toán 7 tập 2


Giải bài 26 trang 41 sách bài tập toán 7. Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC.

Đề bài

Cho tam giác \(ABC,\) điểm \(D \) nằm giữa \(B\) và \(C.\)

Chứng minh rằng \(AD\) nhỏ hơn nửa chu vi tam giác \(ABC.\)

Phương pháp giải - Xem chi tiết

Sử dụng: 
Trong một tam giác:
+) Hiệu độ dài hai cạnh bất kỳ bao giờ cũng nhỏ hơn độ dài cạnh còn lại
+) Độ dài một cạnh bao giờ cũng nhỏ hơn tổng độ dài của hai cạnh còn lại

Lời giải chi tiết

Nửa chu vi tam giác \(ABC\) là: \(\dfrac{AB+AC+BC}{2}\)

Trong \(∆ABD\) ta có:

\(AD < AB + BD\) (bất đẳng thức tam giác)    (1)

Trong \(∆ADC\) ta có:

\(AD < AC + DC\) (bất đẳng thức tam giác)    (2)

Cộng từng vế (1) và (2):

\(\eqalign{
& 2{\rm{AD}} < AB + B{\rm{D}} + AC + DC \cr 
& \Rightarrow 2AD < AB + AC + BC \cr 
& \Rightarrow A{\rm{D}} < {{AB + AC + BC} \over 2} \cr} \)

Loigiaihay.com


Bình chọn:
4.3 trên 13 phiếu
  • Bài 27 trang 41 SBT toán 7 tập 2

    Giải bài 27 trang 41 sách bài tập toán 7. Cho điểm M nằm trong tam giác ABC. Chứng minh rằng tổng MA + MB + MC lớn hơn nửa chu vi tam giác ABC.

  • Bài 28 trang 41 SBT toán 7 tập 2

    Giải bài 28 trang 41 sách bài tập toán 7. Tính chu vi của một tam giác cân biết độ dài hai cạnh của nó bằng 3dm và 5dm.

  • Bài 29 trang 41 SBT toán 7 tập 2

    Giải bài 29 trang 41 sách bài tập toán 7. Độ dài hai cạnh của một tam giác bằng 7cm và 2cm. Tính độ dài cạnh còn lại biết rằng số đo của nó theo xentimét là một số tự nhiên lẻ.

  • Bài 30 trang 41 SBT toán 7 tập 2

    Giải bài 30 trang 41 sách bài tập toán 7. Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AM<(AB+AC)/2

  • Bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 41, 42 SBT toán 7 tập 2

    Giải bài 3.1, 3.2, 3.3, 3.4 phần bài tập bổ sung trang 41, 42 sách bài tập toán 7. Bộ ba nào sau đây không thể là số đo ba cạnh của một tam giác? (A) 1cm, 2m, 2,5cm (B) 3cm; 4cm ; 6cm; (C) 6cm, 7cm, 13cm; (D) 6cm, 7cm, 12cm

>> Xem thêm

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.