Giải bài 2 trang 133 sách bài tập toán 11 - Chân trời sáng tạo tập 1


Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và O là giao điểm của AC và BD. Gọi M, N, P lần lượt là ba điểm nằm trên các cạnh AB, BC, SO. Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S. ABCD (nếu có).

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và O là giao điểm của AC và BD. Gọi M, N, P lần lượt là ba điểm nằm trên các cạnh AB, BC, SO. Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S. ABCD (nếu có).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giao tuyến giữa hai mặt phẳng để tìm giao tuyến: Đường thẳng d chung giữa hai mặt phẳng (P) và (Q) được gọi là giao tuyến của (P) và (Q), kí hiệu  \(d = \left( P \right) \cap \left( Q \right)\).

Lời giải chi tiết

Vì \(M \in AB,N \in BC,AB \subset \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow MN \subset \left( {ABCD} \right)\)

Lại có: \(MN \subset \left( {MNP} \right) \Rightarrow \left( {MNP} \right) \cap \left( {ABCD} \right) = MN\)

Trong mặt phẳng (ABCD), gọi H là giao điểm của MN và DC, K là giao điểm của MN và AD, I là giao điểm của NO và AD.

Trong mặt phẳng (SIO), gọi G là giao điểm của NP và SI.

Trong (SAD), gọi T là giao điểm của KG và SA và R là giao điểm của KG và SD.

Trong mặt phẳng (SCD), gọi Q là giao điểm của RH và SC.

Khi đó, \(\left( {MNP} \right) \cap \left( {SAB} \right) = TM,\left( {MNP} \right) \cap \left( {SCB} \right) = NQ,\)\(\left( {MNP} \right) \cap \left( {SCD} \right) = QR,\left( {MNP} \right) \cap \left( {SAD} \right) = TR\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí