Giải bài 13 trang 57 sách bài tập toán 9 - Cánh diều tập 1


Áp dụng quy tắc về căn bậc hai của một thương, hãy tính: a) \(\sqrt {\frac{{1,21}}{{0,49}}} \) b) \(\frac{{\sqrt {15} }}{{\sqrt {735} }}\) c) \(\frac{{\sqrt {12,5} }}{{\sqrt {0,5} }}\) d) \(\frac{{\sqrt 8 }}{{\sqrt {{4^4}{{.2}^3}} }}\)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Áp dụng quy tắc về căn bậc hai của một thương, hãy tính:

a) \(\sqrt {\frac{{1,21}}{{0,49}}} \)

b) \(\frac{{\sqrt {15} }}{{\sqrt {735} }}\)

c) \(\frac{{\sqrt {12,5} }}{{\sqrt {0,5} }}\)

d) \(\frac{{\sqrt 8 }}{{\sqrt {{4^4}{{.2}^3}} }}\)

Phương pháp giải - Xem chi tiết

Áp dụng: Với \(a \ge 0,b > 0\), ta có: \(\sqrt {\frac{a}{b}}  = \frac{{\sqrt a }}{{\sqrt b }}\).

Lời giải chi tiết

a) \(\sqrt {\frac{{1,21}}{{0,49}}}  = \frac{{\sqrt {1,21} }}{{\sqrt {0,49} }} = \frac{{1,1}}{{0,7}} = \frac{{11}}{7}.\)

b) \(\frac{{\sqrt {15} }}{{\sqrt {735} }} = \sqrt {\frac{{15}}{{735}}}  = \sqrt {\frac{1}{{49}}}  = \frac{{\sqrt 1 }}{{\sqrt {49} }} = \frac{1}{7}.\)

c) \(\frac{{\sqrt {12,5} }}{{\sqrt {0,5} }} = \sqrt {\frac{{12,5}}{{0,5}}}  = \sqrt {25}  = 5.\)

d) \(\frac{{\sqrt 8 }}{{\sqrt {{4^4}{{.2}^3}} }} = \frac{{\sqrt 8 }}{{\sqrt {{4^4}.8} }} = \frac{{\sqrt 8 }}{{\sqrt {{4^4}} .\sqrt 8 }} = \frac{1}{{\sqrt {{{\left( {{4^2}} \right)}^2}} }} = \frac{1}{{16}}.\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí