Giải bài 1.22 trang 19 SGK Toán 7 tập 1 - Kết nối tri thức>
Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ.
Đề bài
Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ.
\(\begin{array}{l}a){15^8}{.2^4};\\b){27^5}:{32^3}\end{array}\)
Phương pháp giải - Xem chi tiết
Bước 1: Đưa về dạng 2 lũy thừa có cùng số mũ
Bước 2: Áp dụng công thức tích, thương của 2 lũy thừa có cùng số mũ:
\(a^n.b^n=(a.b)^n; a^n:b^n=(a:b)^n\)
Lời giải chi tiết
\(\begin{array}{l}a){15^8}{.2^4} = {15^{2.4}}{.2^4} = {({15^2})^4}{.2^4}\\ = {225^4}{.2^4} = {(225.2)^4} = {450^4}\\b){27^5}:{32^3} = {({3^3})^5}:{({2^5})^3}\\ = {3^{3.5}}:{2^{5.3}} = {3^{15}}:{2^{15}} = {\left( {\frac{3}{2}} \right)^{15}}\end{array}\)
- Giải bài 1.23 trang 19 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 1.24 trang 19 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 1.25 trang 19 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 1.21 trang 19 SGK Toán 7 tập 1 - Kết nối tri thức
- Giải bài 1.20 trang 18 SGK Toán 7 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2