Giải Bài 11 trang 39 sách bài tập toán 7 tập 1 - Cánh diều


Chứng tỏ rằng

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Chứng tỏ rằng \(\sqrt 2 \) là số vô tỉ.

Phương pháp giải - Xem chi tiết

Ta chứng minh \(\sqrt 2 \) là số vô tỉ bằng cách chứng minh điều ngược lại là sai: giả sử \(\sqrt 2 \) không là số vô tỉ.

Lời giải chi tiết

Giả sử \(\sqrt 2 \) là số hữu tỉ.

Như vậy, \(\sqrt 2 \) có thể viết được dưới dạng \(\dfrac{m}{n}\) với \(m,n \in \mathbb{N}\) và \((m,n) = 1\).

Ta có:  \(\sqrt 2  = \dfrac{m}{n}\) nên \({\left( {\sqrt 2 } \right)^2} = {\left( {\dfrac{m}{n}} \right)^2}\) hay \(2 = \dfrac{{{m^2}}}{{{n^2}}}\). Suy ra: \({m^2} = 2{n^2}\).

Mà \((m,n) = 1\) nên \({m^2}\) chia hết cho 2 hay m chia hết cho 2. Do đó \(m = 2k\) với \(k \in \mathbb{N}\) và \((k,n) = 1\).

Thay \(m = 2k\) vào \({m^2} = 2{n^2}\) ta được: \(4{k^2} = 2{n^2}\) hay \({n^2} = 2{k^2}\).

Do \((k,n) = 1\) nên \({n^2}\) chia hết cho 2 hay n chia hết cho 2.

Suy ra mn đều chia hết cho 2 mâu thuẫn với \((m,n) = 1\).

Vậy \(\sqrt 2 \) không là số hữu tỉ mà là số vô tỉ. 


Bình chọn:
4.5 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí