Giải Bài 10 trang 40 SGK Toán 8 tập 1 – Chân trời sáng tạo>
Khi phân tích đa thức
Đề bài
Khi phân tích đa thức \(S = {x^6} - 8\) thành nhân tử thì được:
A. \(S = \left( {{x^2} + 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
B. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} - 2{x^2} + 4} \right)\)
C. \(S = \left( {{x^2} - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
D. \(S = \left( {x - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp hằng đẳng thức
Lời giải chi tiết
\(S = {x^6} - 8 = {\left( {{x^2}} \right)^3} - {2^3} = \left( {{x^2} - 2} \right)\left( {{x^4} + 2{x^2} + 4} \right)\)
Đáp án C
- Giải Bài 11 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 12 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 13 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 14 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 15 trang 41 SGK Toán 8 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo