Đề thi giữa kì 1 Toán 11 Chân trời sáng tạo - Đề số 6
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Phần trắc nghiệm
Đề bài
Góc có số đo \({75^o}\) bằng bao nhiêu radian?
-
A.
\(\frac{{5\pi }}{{12}}\)
-
B.
\(\frac{{7\pi }}{{12}}\)
-
C.
\(\frac{\pi }{2}\)
-
D.
\(\frac{\pi }{6}\)
Cho \(\sin \alpha = \frac{2}{3}\) với \(\frac{\pi }{2} < \alpha < \pi \). Giá trị của \(\cos \alpha \) là?
-
A.
\(\cos \alpha = \frac{2}{3}\)
-
B.
\(\cos \alpha = - \frac{{\sqrt 5 }}{3}\)
-
C.
\(\cos \alpha = \frac{{\sqrt 5 }}{3}\)
-
D.
\(\cos \alpha = \frac{3}{2}\)
Giá trị lượng giác \(\sin \left( {\frac{{5\pi }}{{12}}} \right)\) bằng?
-
A.
0,9
-
B.
\(\frac{{\sqrt 2 (1 + \sqrt 3 )}}{2}\)
-
C.
\(\frac{{\sqrt 3 (1 + \sqrt 2 )}}{4}\)
-
D.
\(\frac{{\sqrt 2 (1 + \sqrt 3 )}}{4}\)
Hàm số nào sau đây là hàm số chẵn?
-
A.
\(y = - \cos x\)
-
B.
\(y = - 2\sin x\)
-
C.
\(y = 2\sin ( - x)\)
-
D.
\(y = \sin x - \cos x\)
Nghiệm của phương trình \(\sin x = 0\) là?
-
A.
\(x = k2\pi ,k \in \mathbb{Z}\)
-
B.
\(x = k\pi ,k \in \mathbb{Z}\)
-
C.
\(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
-
D.
\(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)
Số hạng thứ 4 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = \frac{1}{{{u_{n - 1}} + 2}}}\end{array}} \right.\) là?
-
A.
\(\frac{7}{{17}}\)
-
B.
\(\frac{7}{{15}}\)
-
C.
\(\frac{8}{7}\)
-
D.
\(\frac{3}{8}\)
Dãy số nào sau đây là cấp số cộng?
-
A.
1; 3; 6; 9
-
B.
1; 3; 5; 7; 9
-
C.
1; 2; 4; 6; 8
-
D.
1; -3; -5; -7; -9
Cho cấp số nhân 32; 16; 8; 4; 2. Công bội của cấp số nhân là?
-
A.
\(q = 2\)
-
B.
\(q = \frac{1}{2}\)
-
C.
\(q = \frac{1}{4}\)
-
D.
\(q = \frac{1}{3}\)
Cho hình chóp S.ABCD, gọi O là giao điểm của AC và BD. Lấy M, N lần lượt thuộc các cạnh SA, SC. Đường thẳng nào sau đây không thuộc mặt phẳng (SAC)?
-
A.
SA
-
B.
MN
-
C.
AC
-
D.
BO
Cho hình hộp chữ nhật ABCD.A’B’C’D’ như hình. Mệnh đề nào sau đây là sai?
-
A.
AB//CD
-
B.
AB//C’D’
-
C.
AB//A’B’
-
D.
AB//A’C’
Nghiệm của phương trình \(\cos \left( {\frac{x}{2}} \right) = - \frac{1}{2}\) là
-
A.
\(x = \frac{{4\pi }}{3} + k2\pi \) hoặc \(x = - \frac{{4\pi }}{3} + k2\pi \), \(k \in \mathbb{Z}\)
-
B.
\(x = \frac{{2\pi }}{3} + k2\pi \) hoặc \(x = - \frac{{2\pi }}{3} + k2\pi \), \(k \in \mathbb{Z}\)
-
C.
\(x = \frac{{4\pi }}{3} + k\pi \) hoặc \(x = - \frac{{4\pi }}{3} + k\pi \), \(k \in \mathbb{Z}\)
-
D.
\(x = \frac{\pi }{3} + k\pi \) hoặc \(x = - \frac{\pi }{3} + k\pi \), \(k \in \mathbb{Z}\)
Cho cấp số cộng \(({u_n})\) có \({u_1} = - 2\) và công sai \(d = 5\). Số 198 là số hạng thứ bao nhiêu của cấp số cộng?
-
A.
25
-
B.
39
-
C.
40
-
D.
41
Cho hàm số \(y = \sin x\). Khi đó
a) \(\sin x < 0\) khi \( - \frac{\pi }{2} < x < 0\)
b) Hàm số \(y = \sin x\) lẻ với mọi \(x \in \mathbb{R}\)
c) Phương trình \(\sin x = 1\) có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
d) Hàm số \(y = \sin x\) có chặn dưới là 0
Cho \(\sin \alpha = \frac{1}{3}\) và \(0 < \alpha < \frac{\pi }{2}\). Khi đó
a) \(\cos \alpha = - \frac{{2\sqrt 2 }}{3}\)
b) \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\)
c) \(\tan \alpha = \frac{{\sqrt 2 }}{4}\)
d) \(\cot \alpha = - 2\sqrt 2 \)
Cho dãy số \(({u_n})\) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 3}\\{{u_{n + 1}} = 2{u_n}}\end{array}} \right.\) với \(n \ge 1\). Khi đó
a) Dãy số \(({u_n})\) là dãy số giảm
b) Dãy số \(({u_n})\) là dãy số bị chặn
c) \({u_2} = 6\)
d) Công thức tổng quát của \(({u_n})\) là \({u_n} = {2^{n - 1}}.3\)
Cho hình chóp S.ABCD như hình vẽ, có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD; điểm M, N lần lượt là trung điểm của SA và SC. Khi đó
a) Gọi P là giao điểm của SO và MN. Khi đó, P (SBD)
b) AC//(DMN)
c) Giao tuyến của (SAD) và (SBC) sẽ song song với đường thẳng AB
d) MN//(ABCD)
Khi đu quay hoạt động, vận tốc theo phương ngang của một cabin M phụ thuộc vào góc lượng giác \(\alpha = (Ox,OM)\) theo hàm số \({v_x} = 0,25\sin \alpha \) (m/s). Vận tốc lớn nhất của cabin là (Viết dưới dạng số thập phân)?
Đáp án:
Cho vận tốc v (cm/s) của một con lắc đơn theo thời gian t (giây) được xác định bởi công thức \(v = - 4\sin \left( {1,5t + \frac{\pi }{4}} \right)\) với \(0 \le t \le 2\). Xác định thời điểm vận tốc con lắc bằng 2 cm/s (Làm tròn kết quả đến hàng phần mười)?
Đáp án:
Khán đài D của một sân vận động có 20 hàng ghế xếp theo hình quạt. hàng thứ nhất có 13 ghế, hàng thứ hai có 16 ghế, hàng thứ ba có 19 ghế,…, cứ thế tiếp tục cho đến hàng cuối cùng. Số ghế ở hàng cuối cùng là?
Đáp án:
Một tỉnh có 2 triệu dân vào năm 2020 với tỉ lệ tăng dân số là 1%/năm. Gỉa sử tỉ lệ tăng dân số là không đổi. Tính số dân (đơn vị: triệu người) của tỉnh đó sau 10 năm kể từ năm 2020 (Làm tròn đến hàng phần trăm)?
Đáp án:
Cho hình chóp S.ABCD đáy là hình bình hành, cạnh AB = 6 cm, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng (ICD) cắt SA, SB lần lượt tại M, N. Độ dài MN là?
Đáp án:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M nằm trên cạnh AD (giữa A và D) sao cho AD = 3MD. Một mặt phẳng \((\alpha )\) đi qua M, song song với CD và SA, cắt BC, SC, SD lần lượt tại N, P, Q. Với cạnh CD = 9 (cm) thì độ dài đoạn PQ là bao nhiêu?
Đáp án:
Lời giải và đáp án
Góc có số đo \({75^o}\) bằng bao nhiêu radian?
-
A.
\(\frac{{5\pi }}{{12}}\)
-
B.
\(\frac{{7\pi }}{{12}}\)
-
C.
\(\frac{\pi }{2}\)
-
D.
\(\frac{\pi }{6}\)
Đáp án : A
Áp dụng quan hệ giữa radian và độ: \(1rad = {\left( {\frac{{180}}{\pi }} \right)^o}\), \({1^o} = \frac{\pi }{{180}}rad\).
Ta có: \({75^o} = 75.\frac{\pi }{{180}} = \frac{{5\pi }}{{12}}\).
Cho \(\sin \alpha = \frac{2}{3}\) với \(\frac{\pi }{2} < \alpha < \pi \). Giá trị của \(\cos \alpha \) là?
-
A.
\(\cos \alpha = \frac{2}{3}\)
-
B.
\(\cos \alpha = - \frac{{\sqrt 5 }}{3}\)
-
C.
\(\cos \alpha = \frac{{\sqrt 5 }}{3}\)
-
D.
\(\cos \alpha = \frac{3}{2}\)
Đáp án : B
Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và sử dụng đường tròn lượng giác để xét dấu.
Ta có: \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{3}{2}} \right)^2} = \frac{5}{9}\), suy ra \(\cos \alpha = \pm \frac{{\sqrt 5 }}{3}\).
Vì \(\frac{\pi }{2} < \alpha < \pi \) nên điểm cuối của cung \(\alpha \) thuộc cung phần tư thứ II, do đó \(\cos \alpha < 0\).
Vậy \(\cos \alpha = - \frac{{\sqrt 5 }}{3}\).
Giá trị lượng giác \(\sin \left( {\frac{{5\pi }}{{12}}} \right)\) bằng?
-
A.
0,9
-
B.
\(\frac{{\sqrt 2 (1 + \sqrt 3 )}}{2}\)
-
C.
\(\frac{{\sqrt 3 (1 + \sqrt 2 )}}{4}\)
-
D.
\(\frac{{\sqrt 2 (1 + \sqrt 3 )}}{4}\)
Đáp án : D
Sử dụng công thức cộng lượng giác \(\sin (a + b) = \sin a.\cos b + \sin b.\cos a\).
\(\sin \frac{{5\pi }}{{12}} = \sin \left( {\frac{\pi }{4} + \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}.\cos \frac{\pi }{6} + \sin \frac{\pi }{6}.\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6 + \sqrt 2 }}{4} = \frac{{\sqrt 2 (1 + \sqrt 3 )}}{4}\).
Hàm số nào sau đây là hàm số chẵn?
-
A.
\(y = - \cos x\)
-
B.
\(y = - 2\sin x\)
-
C.
\(y = 2\sin ( - x)\)
-
D.
\(y = \sin x - \cos x\)
Đáp án : A
Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\).
- Nếu f(x) = f(-x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định.
- Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.
Xét phương án A, hàm số \(y = - \cos x\) có tập xác định D = R, suy ra có \(x \in R\) thì \( - x \in R\).
Mặt khác, f(-x) = - cos(-x) = - cosx = f(x).
Vậy hàm số đã cho là hàm số chẵn.
Nghiệm của phương trình \(\sin x = 0\) là?
-
A.
\(x = k2\pi ,k \in \mathbb{Z}\)
-
B.
\(x = k\pi ,k \in \mathbb{Z}\)
-
C.
\(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
-
D.
\(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)
Đáp án : B
Nghiệm của phương trình lượng giác cơ bản.
\(\sin x = 0 \Rightarrow x = k\pi ,k \in \mathbb{Z}\).
Số hạng thứ 4 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = \frac{1}{{{u_{n - 1}} + 2}}}\end{array}} \right.\) là?
-
A.
\(\frac{7}{{17}}\)
-
B.
\(\frac{7}{{15}}\)
-
C.
\(\frac{8}{7}\)
-
D.
\(\frac{3}{8}\)
Đáp án : A
Tìm lần lượt \({u_2},{u_3},{u_4}\) bằng cách thay n vào công thức tổng quát.
Ta có:
\({u_2} = \frac{1}{{{u_1} + 2}} = \frac{1}{{1 + 2}} = \frac{1}{3}\)
\({u_3} = \frac{1}{{{u_2} + 2}} = \frac{1}{{\frac{1}{3} + 2}} = \frac{3}{7}\)
\({u_4} = \frac{1}{{{u_3} + 2}} = \frac{1}{{\frac{3}{7} + 2}} = \frac{7}{{17}}\)
Dãy số nào sau đây là cấp số cộng?
-
A.
1; 3; 6; 9
-
B.
1; 3; 5; 7; 9
-
C.
1; 2; 4; 6; 8
-
D.
1; -3; -5; -7; -9
Đáp án : B
Dãy số lập thành một cấp số cộng khi và chỉ khi hai phần tử liên tiếp sai khác nhau một hằng số.
Xét hiệu các phần tử liên tiếp trong các dãy số, chỉ có dãy ở đáp án B phần tử sau hơn phần tử liền trước 2 đơn vị (9 – 7 = 7 – 5 = 5 – 3 = 3 – 1 = 2).
Cho cấp số nhân 32; 16; 8; 4; 2. Công bội của cấp số nhân là?
-
A.
\(q = 2\)
-
B.
\(q = \frac{1}{2}\)
-
C.
\(q = \frac{1}{4}\)
-
D.
\(q = \frac{1}{3}\)
Đáp án : B
\(q = \frac{{{u_{n + 1}}}}{{{u_n}}}\).
Ta có: \(\frac{{16}}{{32}} = \frac{8}{{16}} = \frac{4}{8} = \frac{2}{4} = \frac{1}{2}\). Vậy \(q = \frac{1}{2}\).
Cho hình chóp S.ABCD, gọi O là giao điểm của AC và BD. Lấy M, N lần lượt thuộc các cạnh SA, SC. Đường thẳng nào sau đây không thuộc mặt phẳng (SAC)?
-
A.
SA
-
B.
MN
-
C.
AC
-
D.
BO
Đáp án : D
Đường thẳng thuộc mặt phẳng khi và chỉ khi tất cả các điểm trên đường thẳng thuộc mặt phẳng đó.
Dễ thấy các điểm S, A, C, M, N, O đều thuộc mặt phẳng (SAC), điểm B không thuộc mặt phẳng (SAC). Suy ra BO không thuộc mặt phẳng (SAC).
Cho hình hộp chữ nhật ABCD.A’B’C’D’ như hình. Mệnh đề nào sau đây là sai?
-
A.
AB//CD
-
B.
AB//C’D’
-
C.
AB//A’B’
-
D.
AB//A’C’
Đáp án : D
Dựa vào tính chất hình hộp.
Ta có: ABCD.A’B’C’D’ là hình hộp chữ nhật nên:
- AB//CD.
- AB//C’D’ (cùng song song với CD)
- AB//A’B’
- AC//A’C’, mà AC cắt AB nên A’C’ cắt AB.
Nghiệm của phương trình \(\cos \left( {\frac{x}{2}} \right) = - \frac{1}{2}\) là
-
A.
\(x = \frac{{4\pi }}{3} + k2\pi \) hoặc \(x = - \frac{{4\pi }}{3} + k2\pi \), \(k \in \mathbb{Z}\)
-
B.
\(x = \frac{{2\pi }}{3} + k2\pi \) hoặc \(x = - \frac{{2\pi }}{3} + k2\pi \), \(k \in \mathbb{Z}\)
-
C.
\(x = \frac{{4\pi }}{3} + k\pi \) hoặc \(x = - \frac{{4\pi }}{3} + k\pi \), \(k \in \mathbb{Z}\)
-
D.
\(x = \frac{\pi }{3} + k\pi \) hoặc \(x = - \frac{\pi }{3} + k\pi \), \(k \in \mathbb{Z}\)
Đáp án : A
Giải phương trình lượng giác \(\cos x = a\):
- Nếu \(\left| a \right| > 1\) thì phương trình vô nghiệm.
- Nếu \(\left| a \right| \le 1\) thì chọn cung \(\alpha \) sao cho \(\cos \alpha = a\). Khi đó phương trình trở thành:
\(\cos x = \cos \alpha \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha + k2\pi }\\{x = - \alpha + k2\pi }\end{array}} \right.\) với \(k \in \mathbb{Z}\).
Do \(\cos \frac{{2\pi }}{3} = - \frac{1}{2}\) nên \(\cos \frac{x}{2} = \cos \frac{{2\pi }}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{x}{2} = \frac{{2\pi }}{3} + k2\pi }\\{\frac{x}{2} = - \frac{{2\pi }}{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{4\pi }}{3} + k2\pi }\\{x = - \frac{{4\pi }}{3} + k2\pi }\end{array}} \right.\) với \(k \in \mathbb{Z}\).
Cho cấp số cộng \(({u_n})\) có \({u_1} = - 2\) và công sai \(d = 5\). Số 198 là số hạng thứ bao nhiêu của cấp số cộng?
-
A.
25
-
B.
39
-
C.
40
-
D.
41
Đáp án : D
Cấp số cộng \(({u_n})\) có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng thứ n là \({u_n} = {u_1} + (n - 1)d\).
Gọi 198 là số hạng thứ n của dãy. Ta có: \(198 = {u_1} + (n - 1)d = - 2 + (n - 1).5 \Leftrightarrow 5n = 205 \Leftrightarrow n = 41\).
Cho hàm số \(y = \sin x\). Khi đó
a) \(\sin x < 0\) khi \( - \frac{\pi }{2} < x < 0\)
b) Hàm số \(y = \sin x\) lẻ với mọi \(x \in \mathbb{R}\)
c) Phương trình \(\sin x = 1\) có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
d) Hàm số \(y = \sin x\) có chặn dưới là 0
a) \(\sin x < 0\) khi \( - \frac{\pi }{2} < x < 0\)
b) Hàm số \(y = \sin x\) lẻ với mọi \(x \in \mathbb{R}\)
c) Phương trình \(\sin x = 1\) có nghiệm \(x = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
d) Hàm số \(y = \sin x\) có chặn dưới là 0
a) Dựa vào góc phần tư của đường tròn lượng giác.
b) Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\).
- Nếu f(x) = f(-x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định.
- Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.
c) Giải phương trình lượng giác \(\sin x = a\):
- Nếu \(\left| a \right| > 1\) thì phương trình vô nghiệm.
- Nếu \(\left| a \right| \le 1\) thì chọn cung \(\alpha \) sao cho \(\sin \alpha = a\). Khi đó phương trình trở thành:
\(\sin x = \sin \alpha \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha + k2\pi }\\{x = \pi - \alpha + k2\pi }\end{array}} \right.\) với \(k \in \mathbb{Z}\).
d) Xét tập giá trị của hàm số \(y = \sin x\).
a) Đúng. \( - \frac{\pi }{2} < x < 0\) suy ra điểm cuối cung x thuộc góc phần tư thứ IV. Khi đó \(\sin x < 0\).
b) Đúng. Tập xác định: D = R. Mặt khác, \(f( - x) = \sin ( - x) = - \sin x = - f(x)\). Vậy \(y = \sin x\) là hàm số lẻ.
c) Sai. Do \(\sin \frac{\pi }{2} = 1\) nên \(\sin x = \sin \frac{\pi }{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k2\pi }\\{x = \pi - \frac{\pi }{2} + k2\pi }\end{array}} \right. \Leftrightarrow x = \frac{\pi }{2} + k2\pi \) với \(k \in \mathbb{Z}\).
d) Sai. Hàm số \(y = \sin x\) có chặn dưới là -1.
Cho \(\sin \alpha = \frac{1}{3}\) và \(0 < \alpha < \frac{\pi }{2}\). Khi đó
a) \(\cos \alpha = - \frac{{2\sqrt 2 }}{3}\)
b) \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\)
c) \(\tan \alpha = \frac{{\sqrt 2 }}{4}\)
d) \(\cot \alpha = - 2\sqrt 2 \)
a) \(\cos \alpha = - \frac{{2\sqrt 2 }}{3}\)
b) \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\)
c) \(\tan \alpha = \frac{{\sqrt 2 }}{4}\)
d) \(\cot \alpha = - 2\sqrt 2 \)
a) Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu.
b) Áp dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu.
c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{\cot \alpha }}\)
d) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\tan \alpha }}\)
a) Sai. \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Rightarrow \cos \alpha = \pm \frac{{2\sqrt 2 }}{3}\).
Vì \(0 < \alpha < \frac{\pi }{2}\) nên điểm cuối của cung \(\alpha \) thuộc góc phần tư thứ I nên \(\cos \alpha > 0\). Vậy \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\).
b) Đúng. Từ câu a) ta tính được \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\).
c) Đúng. \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{\frac{{2\sqrt 2 }}{3}}} = \frac{1}{{2\sqrt 2 }} = \frac{{\sqrt 2 }}{4}\).
d) Sai. \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{\sqrt 2 }}{4}}} = 2\sqrt 2 \).
Cho dãy số \(({u_n})\) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 3}\\{{u_{n + 1}} = 2{u_n}}\end{array}} \right.\) với \(n \ge 1\). Khi đó
a) Dãy số \(({u_n})\) là dãy số giảm
b) Dãy số \(({u_n})\) là dãy số bị chặn
c) \({u_2} = 6\)
d) Công thức tổng quát của \(({u_n})\) là \({u_n} = {2^{n - 1}}.3\)
a) Dãy số \(({u_n})\) là dãy số giảm
b) Dãy số \(({u_n})\) là dãy số bị chặn
c) \({u_2} = 6\)
d) Công thức tổng quát của \(({u_n})\) là \({u_n} = {2^{n - 1}}.3\)
a) Dãy số \(({u_n})\) là dãy số giảm nếu \({u_n} > {u_{n + 1}}\). Dãy số \(({u_n})\) là dãy số tăng nếu \({u_n} < {u_{n + 1}}\).
b) Dãy số \(({u_n})\) là dãy số bị chặn nếu \(({u_n})\) vừa bị chặn trên vừa bị chặn dưới, tức tồn tại hai số m, M sao cho \(m \le {u_n} \le M\) \(\forall n \in \mathbb{N}*\).
c) Tính \({u_2}\) bằng công thức \({u_{n + 1}} = 2{u_n}\).
d) Tìm số hạng đầu \({u_1}\) và công sai d. Công thức tổng quát: \({u_n} = {u_1}.{q^{n - 1}}\).
a) Sai. Ta có: \({u_1} = 3 > 0\). Với n = 1, ta được \({u_2} = 2{u_1} = 2.3 = 6 > 0\).
Giả sử n = k, ta cần chứng minh \({u_k} > 0\) thì \({u_{k + 1}} > 0\).
Thật vậy, \({u_{k + 1}} = 2{u_k} > 0\) vì \({u_k} > 0\).
Vậy \({u_n} > 0\) \(\forall n \ge 1\).
Ta có: \({u_{n + 1}} - {u_n} = 2{u_n} - {u_n} = {u_n} > 0\). Suy ra \({u_n} < {u_{n + 1}}\). Vậy dãy số trên là dãy số tăng.
b) Sai. Ta có: \(({u_n})\) là dãy số tăng nên \(({u_n})\) bị chặn dưới tại \({u_1} = 3\).
Mặt khác, \(({u_n})\) là cấp số nhân có công bội \(q = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{2{u_n}}}{{{u_n}}} = 2\) và số hạng đầu \({u_1} = 3\) nên công thức tổng quát là \({u_n} = {3.2^{n - 1}}\). Ta có \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } {3.2^{n - 1}} = + \infty \) nên dãy không bị chặn trên.
Vậy dãy số không bị chặn.
c) Đúng. \({u_2} = 2{u_1} = 2.3 = 6\).
d) Đúng. Theo câu b), công thức tổng quát là \({u_n} = {3.2^{n - 1}}\).
Cho hình chóp S.ABCD như hình vẽ, có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD; điểm M, N lần lượt là trung điểm của SA và SC. Khi đó
a) Gọi P là giao điểm của SO và MN. Khi đó, P (SBD)
b) AC//(DMN)
c) Giao tuyến của (SAD) và (SBC) sẽ song song với đường thẳng AB
d) MN//(ABCD)
a) Gọi P là giao điểm của SO và MN. Khi đó, P (SBD)
b) AC//(DMN)
c) Giao tuyến của (SAD) và (SBC) sẽ song song với đường thẳng AB
d) MN//(ABCD)
Sử dụng các định lý về đường thẳng song song với mặt phẳng, cách tìm giao tuyến của hai mặt phẳng.
a) Đúng. Ta có: \(O \in BD \subset (SBD)\), \(S \in (SBD)\) suy ra \(SO \subset (SBD)\).
Mà \(P \in SO\) nên \(P \in (SBD)\).
b) Đúng. Xét \(\Delta SAC\) có MN là đường trung bình, suy ra AC//MN. Khi đó AC//(DMN).
c) Sai. Vì AD//BC, S là điểm chung của (SAD) và (SBC) nên giao tuyến của hai mặt phẳng trên là đường thẳng qua S song song với AD và BC. Vậy giao tuyến đó không song song với AB.
d) Đúng. Vì MN//AC nên MN//(ABCD).
Khi đu quay hoạt động, vận tốc theo phương ngang của một cabin M phụ thuộc vào góc lượng giác \(\alpha = (Ox,OM)\) theo hàm số \({v_x} = 0,25\sin \alpha \) (m/s). Vận tốc lớn nhất của cabin là (Viết dưới dạng số thập phân)?
Đáp án:
Đáp án:
Tìm giá trị lớn nhất của hàm số \({v_x} = 0,25\sin \alpha \).
Vì \(\sin \alpha \le 1\) nên \(0,25\sin \alpha \le 0,25\). Vậy giá trị nhỏ nhất của \({v_x} = 0,25\sin \alpha \) là 0,25 (m/s).
Cho vận tốc v (cm/s) của một con lắc đơn theo thời gian t (giây) được xác định bởi công thức \(v = - 4\sin \left( {1,5t + \frac{\pi }{4}} \right)\) với \(0 \le t \le 2\). Xác định thời điểm vận tốc con lắc bằng 2 cm/s (Làm tròn kết quả đến hàng phần mười)?
Đáp án:
Đáp án:
Thay \(v = 2\) vào công thức \(v = - 4\sin \left( {1,5t + \frac{\pi }{4}} \right)\) và tìm t.
\(2 = - 4\sin \left( {1,5t + \frac{\pi }{4}} \right) \Leftrightarrow - \frac{1}{2} = \sin \left( {1,5t + \frac{\pi }{4}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{1,5t + \frac{\pi }{4} = - \frac{\pi }{6} + k2\pi }\\{1,5t + \frac{\pi }{4} = \frac{{7\pi }}{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = - \frac{\pi }{3} + k\frac{{4\pi }}{3}}\\{t = \frac{{5\pi }}{9} + k\frac{{4\pi }}{3}}\end{array}} \right.\) với \(k \in \mathbb{Z}\).
Vì \(0 \le t \le 2\) nên chỉ có 1 giá trị của t thỏa mãn là \(t = \frac{{5\pi }}{9} \approx 1,7\).
Khán đài D của một sân vận động có 20 hàng ghế xếp theo hình quạt. hàng thứ nhất có 13 ghế, hàng thứ hai có 16 ghế, hàng thứ ba có 19 ghế,…, cứ thế tiếp tục cho đến hàng cuối cùng. Số ghế ở hàng cuối cùng là?
Đáp án:
Đáp án:
Số ghế mỗi hàng ở khán đài lập thành một cấp số cộng với 20 hàng tương đương 20 số hạng. Tìm số hạng đầu, công sai từ đó tìm số hạng thứ 20.
Số ghế mỗi hàng ở khán đài lập thành một cấp số cộng với 20 hàng tương đương 20 số hạng.
Ta có: \({u_1} = 13,{u_2} = 16,{u_3} = 19\) nên công sai bằng \(d = {u_2} - {u_1} = {u_3} - {u_2} = 3\).
Số ghế hàng cuối cùng là: \({u_{20}} = 13 + (20 - 1).3 = 70\).
Một tỉnh có 2 triệu dân vào năm 2020 với tỉ lệ tăng dân số là 1%/năm. Gỉa sử tỉ lệ tăng dân số là không đổi. Tính số dân (đơn vị: triệu người) của tỉnh đó sau 10 năm kể từ năm 2020 (Làm tròn đến hàng phần trăm)?
Đáp án:
Đáp án:
Số dân mỗi năm lập thành môt cấp số nhân. Tìm công thức tổng quát của cấp số nhân đó và tìm số hạng thứ 10.
Số dân mỗi năm lập thành môt cấp số nhân \({u_n}\) với số hạng đầu \({u_1} = 2\) triệu người và công sai \(q = 1 + 1\% = 1,01\).
Khi đó, số hạng tổng quát \({u_n} = 2.1,{01^{n - 1}}\).
(*) Số dân tỉnh đó sau 1 năm là \({u_2}\), sau 2 năm là \({u_3}\),...
Số dân tỉnh đó sau 10 năm là \({u_{11}} = 2.1,{01^{11 - 1}} \approx 2,21\) (triệu người).
Lưu ý: Đọc kĩ (*) để tránh nhầm lẫn tính \({u_{10}}\).
Cho hình chóp S.ABCD đáy là hình bình hành, cạnh AB = 6 cm, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng (ICD) cắt SA, SB lần lượt tại M, N. Độ dài MN là?
Đáp án:
Đáp án:
Tìm giao điểm của IC với SA, ID với SB. Tìm MN theo định lý Menelaus.
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{M \in (ICD)}\\{M \in SA \subset (SAC)}\end{array}} \right.\) suy ra \(M \in (ICD) \cap (SAC)\)
\(\left\{ {\begin{array}{*{20}{c}}{I \in (ICD)}\\{I \in SO \subset (SAC)}\end{array}} \right.\) suy ra \(I \in (ICD) \cap (SAC)\)
\(C \in (ICD) \cap (SAC)\)
Vậy, C, I, M thẳng hàng, tức M là giao điểm của IC và SA.
Chứng minh tương tự, ta có N, I, D thẳng hàng, tức N là giao điểm của ID và SB.
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{AB = (SAB) \cap (ABCD)}\\{CD = (ICD) \cap (ABCD)}\\{MN = (SAB) \cap (ICD)}\\{AB//CD}\end{array}} \right.\). Theo định lý về giao tuyến của ba mặt phẳng, ta được: AB//CD//MN.
Áp dụng định lý Menelaus cho \(\Delta SAO\) với cát tuyến CIM, ta có:
\(\frac{{SM}}{{MA}}.\frac{{AC}}{{OC}}.\frac{{OI}}{{SI}} = 1 \Leftrightarrow \frac{{SM}}{{MA}}.2.1 = 1 \Leftrightarrow \frac{{SM}}{{MA}} = \frac{1}{2}\).
Xét \(\Delta SAB\) có MN//AB. Theo định lý Thales, ta có: \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Leftrightarrow MN = \frac{1}{3}AB = \frac{1}{3}.6 = 2\) (cm).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M nằm trên cạnh AD (giữa A và D) sao cho AD = 3MD. Một mặt phẳng \((\alpha )\) đi qua M, song song với CD và SA, cắt BC, SC, SD lần lượt tại N, P, Q. Với cạnh CD = 9 (cm) thì độ dài đoạn PQ là bao nhiêu?
Đáp án:
Đáp án:
Sử dụng định lý giao tuyến của ba mặt phẳng, định lý Thales.
\(SA//(\alpha )\) nên SA không cắt \(QM \subset (\alpha )\).
Mặt khác, SA và QM cùng thuộc mặt phẳng (SAD) nên SA//QM.
Xét \(\Delta SAD\)\(\Delta SAD\) có QM//SA: \(\frac{{MD}}{{AD}} = \frac{{QD}}{{SD}} = \frac{1}{3}\), suy ra \(\frac{{SQ}}{{SD}} = \frac{2}{3}\).
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{MN = (\alpha ) \cap (ABCD)}\\{CD = (ICD) \cap (ABCD)}\\{PQ = (\alpha ) \cap (ICD)}\\{MN//CD}\end{array}} \right.\). Theo định lý về giao tuyến của ba mặt phẳng, ta được: PQ//CD//MN.
Xét \(\Delta SCD\) có PQ//CD: \(\frac{{PQ}}{{CD}} = \frac{{SQ}}{{SD}} = \frac{2}{3}\), suy ra \(PQ = \frac{2}{3}CD = \frac{2}{3}.9 = 6\).
Phần trắc nghiệm
Phần trắc nghiệm
Câu 1: Góc lượng giác nào dưới đây tương ứng với chuyển động quay (2frac{1}{5}) vòng theo chiều kim đồng hồ?
Câu 1: Góc lượng giác nào dưới đây tương ứng với chuyển động quay \(3\frac{2}{5}\) vòng ngược chiều kim đồng hồ?
Câu 1: Giá trị biểu thức \(P = {\cos ^2}\frac{\pi }{3} - \tan \frac{\pi }{4} + {\cot ^2}\frac{\pi }{6} + \sin \frac{\pi }{2}\) là:
Câu 1: Cho góc lượng giác (Ov, Ow) có số đo là \(\frac{{4\pi }}{5}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{7\pi }}{5}\). Số đo góc lượng giác (Ou, Ov) là:
Câu 1: Cho góc lượng giác (Ou, Ov) có số đo là (frac{{2pi }}{5}), góc lượng giác (Ou, Ow) có số đo là (frac{{3pi }}{5}). Số đo góc lượng giác (Ov, Ow) là: