Bài tập ôn hè môn Toán 6 lên 7, bộ đề ôn tập hè có lời giải chi tiết
Ôn tập hè Chủ đề 6. Phân số. Các bài toán về phân số Dạng 1. Quy đồng mẫu số các phân số Chủ đề 6 Ôn hè Toán 6>
Tải vềĐể quy đồng nhiều phân số, ta thường làm như sau:
Lý thuyết
Để quy đồng nhiều phân số, ta thường làm như sau:
Bước 1: Viết các phân số đã cho dưới dạng phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu số chung
Bước 2: Tìm thừa số phụ của mỗi mẫu, bằng cách chia mẫu chung cho từng mẫu
Bước 3: Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng
Phương pháp rút gọn về phân số tối giản
Bước 1: Tìm ƯCLN của tử và mẫu sau khi đã bỏ dấu – (nếu có)
Bước 2: Chia cả tử và mẫu cho ước chung lớn nhất vừa tìm được, ta có phân số tối giản cần tìm
Bài tập
Bài 1:
Quy đồng mẫu số các phân số sau:
a) \(\frac{3}{{14}}\) và \(\frac{2}{9}\)
b) \(\frac{2}{5};\frac{{ - 3}}{7};\frac{4}{{ - 3}}\)
c) \(\frac{2}{{15}};\frac{{ - 3}}{{10}};\frac{7}{{ - 5}}\)
Bài 2:
Rút gọn các phân số rồi quy đồng mẫu số các phân số:
a) \(\frac{{ - 18}}{{30}};\frac{2}{{15}}\)
b) \(\frac{{27}}{{15}};\frac{{ - 12}}{{10}};\frac{{36}}{{ - 54}}\)
Lời giải chi tiết:
Bài 1:
Quy đồng mẫu số các phân số sau:
a) \(\frac{3}{{14}}\) và \(\frac{2}{9}\)
b) \(\frac{2}{5};\frac{{ - 3}}{7};\frac{4}{{ - 3}}\)
c) \(\frac{2}{{15}};\frac{{ - 3}}{{10}};\frac{7}{{ - 5}}\)
Phương pháp
Bước 1: Viết các phân số đã cho dưới dạng phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu số chung
Bước 2: Tìm thừa số phụ của mỗi mẫu, bằng cách chia mẫu chung cho từng mẫu
Bước 3: Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng
Lời giải
a) \(\frac{3}{{14}}\) và \(\frac{2}{9}\)
Ta có: BCNN(14,9) = 126
Thừa số phụ: 126 : 14 = 9; 126 : 14 = 9
Ta được:
\(\frac{3}{{14}} = \frac{{3.9}}{{14.9}} = \frac{{27}}{{126}}\)
\(\frac{2}{9} = \frac{{2.14}}{{9.14}} = \frac{{28}}{{126}}\)
b) \(\frac{2}{5};\frac{{ - 3}}{7};\frac{4}{{ - 3}}\)
Ta có: \(\frac{4}{{ - 3}} = \frac{{ - 4}}{3}\)
BCNN(5,7,3) = 105
Thừa số phụ: 105 : 5 =21; 105 : 7 = 15; 105 : 3 = 35
Ta được:
\(\begin{array}{l}\frac{2}{5} = \frac{{2.21}}{{5.21}} = \frac{{42}}{{105}};\\\frac{{ - 3}}{7} = \frac{{( - 3).15}}{{7.15}} = \frac{{ - 45}}{{105}};\\\frac{{ - 4}}{3} = \frac{{( - 4).35}}{{3.35}} = \frac{{ - 140}}{{105}}.\end{array}\)
c) \(\frac{2}{{15}};\frac{{ - 3}}{{10}};\frac{7}{{ - 5}}\)
Ta có: \(\frac{7}{{ - 5}} = \frac{{ - 7}}{5}\)
BCNN(15,10,5) = 30.
Thừa số phụ: 30 : 15 = 2; 30 : 10 = 3; 30 : 5 = 6
Ta được:
\(\begin{array}{l}\frac{2}{{15}} = \frac{{2.2}}{{15.2}} = \frac{4}{{30}};\\\frac{{ - 3}}{{10}} = \frac{{( - 3).3}}{{10.3}} = \frac{{ - 9}}{{30}};\\\frac{{ - 7}}{5} = \frac{{( - 7).6}}{{5.6}} = \frac{{ - 42}}{{30}}\end{array}\)
Bài 2:
Rút gọn các phân số rồi quy đồng mẫu số các phân số:
a) \(\frac{{ - 18}}{{30}};\frac{2}{{15}}\)
b) \(\frac{{27}}{{15}};\frac{{ - 12}}{{10}};\frac{{36}}{{ - 54}}\)
Phương pháp
* Rút gọn về phân số tối giản:
Bước 1: Tìm ƯCLN của tử và mẫu sau khi đã bỏ dấu – (nếu có)
Bước 2: Chia cả tử và mẫu cho ước chung lớn nhất vừa tìm được, ta có phân số tối giản cần tìm
* Quy đồng mẫu số các phân số vừa rút gọn:
Bước 1: Viết các phân số đã cho dưới dạng phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu số chung
Bước 2: Tìm thừa số phụ của mỗi mẫu, bằng cách chia mẫu chung cho từng mẫu
Bước 3: Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng
Lời giải
a) \(\frac{{ - 18}}{{30}};\frac{2}{{15}}\)
Ta có:
\(\frac{{ - 18}}{{30}} = \frac{{( - 18):6}}{{30:6}} = \frac{{ - 3}}{5};\)
BCNN(5,15) = 15
Thừa số phụ:
15 :5 = 3; 15 : 15 = 1
Ta được:
\(\begin{array}{l}\frac{{ - 3}}{5} = \frac{{( - 3).3}}{{5.3}} = \frac{{ - 9}}{{15}};\\\frac{2}{{15}}\end{array}\)
b) \(\frac{{27}}{{15}};\frac{{ - 12}}{{10}};\frac{{36}}{{ - 54}}\)
Ta có:
\(\begin{array}{l}\frac{{27}}{{15}} = \frac{{27:3}}{{15:3}} = \frac{9}{5};\\\frac{{ - 12}}{{10}} = \frac{{ - 12:2}}{{10:2}} = \frac{{ - 6}}{5};\\\frac{{36}}{{ - 54}} = \frac{{ - 36}}{{54}} = \frac{{ - 36:18}}{{54:18}} = \frac{{ - 2}}{3}\end{array}\)
BCNN(5,5,3) = 15
Thừa số phụ:
15 : 5 = 3; 15 : 5 = 3; 15 : 3 = 5.
Ta được:
\(\begin{array}{l}\frac{9}{5} = \frac{{9.3}}{{5.3}} = \frac{{27}}{{15}};\\\frac{{ - 6}}{5} = \frac{{ - 6.3}}{{5.3}} = \frac{{ - 18}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 2.5}}{{3.5}} = \frac{{ - 10}}{{15}}\end{array}\)




