Công thức nghiệm của phương trình bậc hai một ẩn là gì? - Toán 9

1. Định nghĩa Phương trình bậc hai một ẩn

Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng

\(a{x^2} + bx + c = 0\),

trong đó x là ẩn; a, b, c là những số cho trước gọi là hệ số và \(a \ne 0\).

2. Công thức nghiệm của phương trình bậc hai

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).

Tính biệt thức \(\Delta  = {b^2} - 4ac\).

- Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\).

- Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \frac{b}{{2a}}\).

- Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Ví dụ: Giải phương trình \({x^2} - 7x - 8 = 0\).

Ta có: \(a = 1,b =  - 7,c =  - 8\).

\(\Delta  = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4.1.\left( { - 8} \right) = 81 > 0\).

Vậy phương trình có hai nghiệm phân biệt là

\({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {81} }}{{2.1}} = 8;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {81} }}{{2.1}} =  - 1\).

Chú ý: Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có a và c trái dấu, tức là \(ac < 0\), thì \(\Delta  = {b^2} - 4ac > 0\). Khi đó, phương trình có hai nghiệm phân biệt.

Ví dụ: Phương trình \({x^2} + 3572x - 3573 = 0\) có \(a = 1 > 0,c =  - 3573 < 0\), suy ra a và c trái dấu.

Do đó phương trình có hai nghiệm phân biệt.

3. Bài tập vận dụng