Bài 7 trang 93 SGK Hình học 10


Giải bài 7 trang 93 SGK Hình học 10. Cho đường tròn (C) có tâm I(1, 2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M từ đó ta sẽ được hai tiếp tuyến với (C) tạo với nhau một góc 600 là một đường tròn.

Đề bài

Cho đường tròn \((C)\) có tâm \(I(1; 2)\) và bán kính bằng \(3\). Chứng minh rằng tập hợp các điểm \(M\) từ đó ta sẽ được hai tiếp tuyến với \((C)\) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó.

Video hướng dẫn giải

Lời giải chi tiết

 

Theo tính chất của tiếp tuyến cắt nhau ta có \(\displaystyle MI\) là tia phân giác góc \(\displaystyle M\)

\(\displaystyle \Rightarrow \) \(\displaystyle \widehat {AMI} = {30^0}\)

Tam giác \(\displaystyle IAM\) vuông tại \(\displaystyle A\) có:

\(\displaystyle IM = {{IA} \over {\sin \widehat {AMI}}} \) \(\displaystyle = {3 \over {\sin {{30}^0}}} = {3 \over {{1 \over 2}}} = 6\)

\(\displaystyle \Rightarrow \) \(\displaystyle M\) luôn cách \(\displaystyle I\) cố định một khoảng bằng \(\displaystyle 6\).

Vậy quỹ tích \(\displaystyle M\) là đường tròn tâm \(\displaystyle I (1; 2)\), bán kính \(\displaystyle R = 6\)

Phương trình đường tròn là: \(\displaystyle {(x - 1)^2} + {(y - 2)^2} = 36\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 4 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài