Đề bài

Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m (H.3.7), thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?

Phương pháp giải

Bước 1: Giả sử chiều quay của chiếc đu quay. Xác định vị trí của cabin sau 20 phút.

Bước 2: Dựa vào giá trị lượng giác của góc, xác định khoảng cách từ cabin đến Ox (trong hình H.3.7)

Bước 3: Suy ra độ cao của người đó sau 20 phút quay.

Lời giải của GV Loigiaihay.com

Giả sử chiếc đu quay quay theo chiều kim đồng hồ.

Gọi M là vị trí của cabin, M’ là vị trí của cabin sau 20 phút và các điểm A A’, B, H như hình dưới.

Vì đi cả vòng quay mất 30 phút nên sau 20 phút, cabin sẽ đi quãng đường bằng \(\frac{2}{3}\) chu vi đường tròn.

Sau 15 phút cabin đi chuyển từ điểm M đến điểm B, đi được \(\frac{1}{2}\) chu vi đường tròn.

 Trong 5 phút tiếp theo cabin đi chuyển từ điểm B đến điểm M’ tương ứng \(\frac{1}{6}\) chu vi đường tròn  hay \(\frac{1}{3}\) cung .

Do đó: \(\widehat {BOM'} = \frac{1}{3}{.180^o} = {60^o}\)\( \Rightarrow \widehat {AOM'} = {90^o} - {60^o} = {30^o}.\)

\( \Rightarrow M'H = \sin {30^o}.OM' = \frac{1}{2}.75 = 37,5\left( m \right).\)

\( \Rightarrow \) Độ cao của người đó là: 37,5 + 90 = 127,5 (m).

Vậy sau 20 phút quay người đó ở độ cao 127,5 m.

Các bài tập cùng chuyên đề

Bài 1 :

Trong Hình 3.6, hai điểm M, N ứng với hai góc phụ nhau \(\alpha \) và \({90^o} - \alpha \) (\(\widehat {xOM} = \alpha ,\;\;\widehat {xON} = {90^o} - \alpha \)). Chứng mình rằng \(\Delta MOP = \Delta NOQ\). Từ đó nêu mối quan hệ giữa \(\cos \alpha \) và \(\sin \left( {{{90}^o} - \alpha } \right)\).

Xem lời giải >>
Bài 2 :

Nêu nhận xét về vị trí của hai điểm M, M’ đối với trục Oy. Từ đó nêu các mối quan hệ giữa \(\sin \alpha \) và \(\sin \left( {{{180}^o} - \alpha } \right)\), giữa \(\cos \alpha \) và  \(\cos \left( {{{180}^o} - \alpha } \right)\).

Xem lời giải >>
Bài 3 :

b) \(2\sin \left( {{{180}^o} - \alpha } \right).\cot \alpha  - \cos \left( {{{180}^o} - \alpha } \right).\tan \alpha .\cot \left( {{{180}^o} - \alpha } \right)\) với \({0^o} < \alpha  < {90^o}\).

Xem lời giải >>
Bài 4 :

a) \(\sin {100^o} + \sin {80^o} + \cos {16^o} + \cos {164^o};\)

Xem lời giải >>
Bài 5 :

Bạn đã biết tỉ số lượng giác của một góc nhọn. Đối với góc tù thì sao?

Xem lời giải >>
Bài 6 :

Bạn đã biết tỉ số lượng giác của một góc nhọn. Đối với góc tù thì sao?

Xem lời giải >>
Bài 7 :

Trên nửa đường tròn đơn vị ta có dây cung MN song song với trục Ox và \(\widehat {xOM} = \alpha \).

a) Chứng minh \(\widehat {xON} = {180^o} - \alpha \)

b) Biểu diễn giá trị lượng giác của góc \({180^o} - \alpha \) theo giá trị lượng giác của góc \(\alpha \).

Xem lời giải >>
Bài 8 :

Cho biết \(\sin \alpha  = \frac{1}{2},\) tìm góc \(\alpha \;({0^o} \le \alpha  \le {180^o})\) bằng cách vẽ nửa đường tròn đơn vị.

Xem lời giải >>
Bài 9 :

Tính các giá trị lượng giác: \(\sin {120^o};\cos {150^o};\cot {135^o}.\)

Xem lời giải >>
Bài 10 :

Trên nửa đường tròn đơn vị, cho dây cung NM song song với trục Ox (Hình 4). Tính tổng số đo của hai góc \(\widehat {xOM}\) và \(\widehat {xON}.\)

Xem lời giải >>
Bài 11 :

Cho biết \(\sin {30^o} = \frac{1}{2};\sin {60^o} = \frac{{\sqrt 3 }}{2};\tan {45^o} = 1.\) Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của \(E = 2\cos {30^o} + \sin {150^o} + \tan {135^o}.\)

Xem lời giải >>
Bài 12 :

Chứng minh các hệ thức sau:

a) \(\sin {20^o} = \sin {160^o}\)

b) \(\cos {50^o} =  - \cos {130^o}\)

Xem lời giải >>
Bài 13 :

Cho tam giác ABC. Chứng minh rằng:

a) \(\sin A = \sin \;(B + C)\)

b) \(\cos A =  - \cos \;(B + C)\)

Xem lời giải >>
Bài 14 :

Trong các đẳng thức sau, đẳng thức nào đúng?

Xem lời giải >>
Bài 15 :

Khẳng định nào sau đây là đúng?

A. \(\sin \alpha  = \sin \left( {180^\circ  - \alpha } \right)\)   

B. \(\cos \alpha  = \cos \left( {180^\circ  - \alpha } \right)\)

C. \(\tan \alpha  = \tan \left( {180^\circ  - \alpha } \right)\)   

D. \(\cot \alpha  = \cot \left( {180^\circ  - \alpha } \right)\)

Xem lời giải >>
Bài 16 :

Cho 00 < \(\alpha \), \(\beta \) < 180và \(\alpha  + \beta  = {180^0}\). Chọn câu trả lời sai

A. \(\sin \alpha  + \sin \beta  = 0\)                      

B. \(\cos \alpha  + \cos \beta  = 0\)                    

C. \(\tan \alpha  + \tan \beta  = 0\)                      

D. \(\cot \alpha  + \cot \beta  = 0\)

Xem lời giải >>
Bài 17 :

Mệnh đề nào sau đây đúng?

Xem lời giải >>
Bài 18 :

Trong các khẳng định sau, khẳng định nào sai?

Xem lời giải >>