\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài đoạn thẳng \(BK\) là
-
A.
\(4,5\,{\rm{cm}}\).
-
B.
\(4,8\,{\rm{cm}}\).
-
C.
\(3\,{\rm{cm}}\).
-
D.
\(4\,{\rm{cm}}\).
Chứng minh \(\Delta AHC \backsim \Delta BKC\) ( g – g )\( \Rightarrow \frac{{AH}}{{BK}} = \frac{{CA}}{{CB}}\,\,\,\, \Leftrightarrow BK = \frac{{AH.CB}}{{CA}} = \frac{{4.6}}{5} = 4,8\left( {{\rm{cm}}} \right)\,\)
Ta có \(\Delta ABC\) cân tại \(A\) \( \Rightarrow AC = AB = 5\,\left( {{\rm{cm}}} \right)\).
Vì \(\Delta ABC\) cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến ứng với cạnh \(BC\) \( \Rightarrow HB = HC = \frac{{BC}}{2} = \frac{6}{2} = 3\,\left( {{\rm{cm}}} \right)\).
Áp dụng định lí Pytago vào tam giác vuông \(ABH\) ta có:
\(A{H^2} = A{B^2} - H{B^2} = {5^2} - {3^2} = 16\) \( \Rightarrow AH = 4\,\left( {{\rm{cm}}} \right)\)
Xét \(\Delta AHC\) và \(\Delta BKC\) có: góc \(C\) chung; \(\widehat {AHC} = \widehat {BKC} = 90^\circ \).
Nên \(\Delta AHC \backsim \Delta BKC\) ( g – g )\( \Rightarrow \frac{{AH}}{{BK}} = \frac{{CA}}{{CB}}\,\,\,\, \Leftrightarrow BK = \frac{{AH.CB}}{{CA}} = \frac{{4.6}}{5} = 4,8\left( {{\rm{cm}}} \right)\,\).
Đáp án : B
Các bài tập cùng chuyên đề
Trong các cặp tam giác sau cặp tam giác nào đồng dạng nếu các cạnh của hai tam giác có độ dài là :
Cho tam giác ABC có AB = 6cm; AC = 9cm; BC = 12cm và tam giác MNP có NP = 8cm; MN= 12cm; PM = 16cm. khẳng định nào sau đây là đúng?
Với điều kiện nào sau đây thì \(\Delta ABC \backsim \Delta MNP\)
Cho \(\Delta ABC \backsim \Delta MNP\) biết \(AB = 3cm;BC = 4cm;MN = 6cm;MP = 5cm\) . Khi đó:
Cho tam giác ABC có AB = 3cm, AC = 5cm; BC = 7cm và MNP có MN = 6cm;
MP = 10cm; NP = 14cm. Tỉ số chu vi của hai tam giác ABC và MNP là
Cho hai tam giác ABC và MNP có kích thước như trong hình, hai tam giác có đồng dạng với nhau không, nếu có thì tỉ số đồng dạng là bao nhiêu?
Cho hình vẽ sau, hãy cho biết hai tam giác nào đồng dạng?
Cho tam giác ABC có AB = 3cm; AC = 6cm; BC = 9cm và MNP có MN = 1cm; MP = 2cm; NP = 3cm. Tỉ số chu vi của hai tam giác MNP và ABC là
Cho \(\Delta ABC \backsim \Delta {A_1}{B_1}{C_1}\) khẳng định nào sau đây là sai
Cho tam giác ABC có độ dài các cạnh lần lượt tỉ lệ với \(4:5:6\) . Cho biết \(\Delta ABC \backsim \Delta A'B'C'\) và cạnh nhỏ nhất của \(\Delta A'B'C'\) bằng 2cm. Độ dài các cạnh còn lại của tam giác \(A'B'C'\) lần lượt là
Tam giác thứ nhất có cạnh nhỏ nhất bằng 8cm, hai cạnh còn lại bằng x và y (x < y). Tam giác thứ hai có cạnh lớn nhất bằng 27cm hai cạnh còn lại cũng bằng x và y. Tính x và y để hai tam giác đồng dạng:
Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi P, Q, R lần lượt là trung điểm của các đoạn thẳng OA, OB, OC. Cho biết tam giác ABC có chu vi bằng 450cm, chu vi tam giác PQR có độ dài là
Hai tam giác đồng dạng với nhau theo trường hợp cạnh – góc – cạnh nếu
Cho \(\Delta D{\rm{EF}}\) và \(\Delta ILK\) , biết DE = 10cm ; EF = 4cm ; IL = 20cm ; LK = 8cm cần thêm điều kiện gì để \(\Delta D{\rm{EF}} \backsim \Delta {\rm{ILK(c - g - c)?}}\)
Hãy chỉ ra cặp tam giác đồng dạng với nhau từ các tam giác sau đây.
Để hai tam giác ABC và DEF đồng dạng thì số đo \(\hat D\) trong hình vẽ dưới bằng
Cho \(\Delta {A'}{B'}{C'}\) và \(\Delta ABC\) có \(\hat A = {\hat A'}\) . Để \(\Delta {A'}{B}{C'} \backsim \Delta ABC\) cần thêm điều kiện là:
Cho \(\Delta MNP \backsim \Delta KIH\) , biết \(\hat M = \hat K,MN = 2cm,MP = 8cm,KH = 4cm\) , thì KI bằng bao nhiêu:
Cho \(\Delta ABC\) , lấy hai điểm D và E lần lượt nằm bên cạnh AB và AC sao cho \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\) Kết luận nào sau đây sai:
Cho \(\Delta ABC\) , có AC = 18cm; AB = 9cm; BC = 15cm. Trên cạnh AC lấy điểm N sao cho AN = 3cm, trên cạnh AB lấy điểm M sao cho AM = 6cm. Tính độ dài đoạn thẳng MN: