Đề bài

Cho hình vẽ:

Chọn đáp án đúng.

  • A.
    \(y = 10\)
  • B.
    \(x = 4,8\)
  • C.
    A, B đều đúng
  • D.
    A, B đều sai
Phương pháp giải
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải của GV Loigiaihay.com

Tam giác ADO và tam giác ECO có: \(\widehat {DAO} = \widehat {CEO} = {90^0},\widehat {AOD} = \widehat {COE}\) (hai góc đối đỉnh)

Do đó, \(\Delta ADO \backsim \Delta ECO \Rightarrow \frac{{AD}}{{EC}} = \frac{{DO}}{{CO}} \Rightarrow \frac{4}{x} = \frac{5}{6} \Rightarrow x = 4,8\)

Áp dụng định lý Pytago vào tam giác ADO vuông tại A ta có:

\(A{D^2} + A{O^2} = O{D^2}\) \( \Rightarrow A{O^2} = D{O^2} - A{D^2} = 9 \Rightarrow AO = 3\)

Tam giác CEO và tam giác CAB có: \(\widehat {CEO} = \widehat {CAB} = {90^0},\widehat {C}\;chung\)

Do đó, \(\Delta CEO \backsim \Delta CAB \Rightarrow \frac{{CO}}{{CB}} = \frac{{CE}}{{CA}} \Rightarrow \frac{{CO}}{{EC + EB}} = \frac{{CE}}{{CO + AO}} \Rightarrow \frac{6}{{4,8 + y}} = \frac{{4,8}}{{6 + 3}} \Rightarrow y = 6,45\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\widehat B = \widehat F\)

Chọn đáp án đúng

Xem lời giải >>
Bài 2 :

Cho hình vẽ:

Chọn đáp án đúng

Xem lời giải >>
Bài 3 :

Cho tam giác ABC vuông tại A và DEF vuông tại D. Để \(\Delta ABC \backsim \Delta DEF\) thì ta cần thêm điều kiện:

Xem lời giải >>
Bài 4 :

Cho các mệnh đề  sau. Chọn câu đúng.

(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

Xem lời giải >>
Bài 5 :

Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 6 :

Cho hình vẽ:

Chọn đáp án đúng.

Xem lời giải >>
Bài 7 :

Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho \(AM = 2m,AM \bot AB\) và đo được góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có \(A'M' = 1cm,\;\widehat {A'M'B'} = \widehat {AMB}\) và đo được \(A'B' = 5cm\) (hình vẽ dưới). Khoảng cách từ A đến B bằng:

Xem lời giải >>
Bài 8 :

Một ngọn tháp cho như hình vẽ dưới đây, biết rằng \(MB = 20m,MF = 2m,FE = 1,65m.\)

Chiều cao AB của ngọn tháp bằng:

Xem lời giải >>
Bài 9 :

Cho hình vẽ:

Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 10 :

Cho tam giác ABC vuông tại A có \(\widehat B = {30^0}\), tam giác MNP vuông tại M có \(\widehat N = {60^{0.}}\)

Chọn đáp án đúng.

Xem lời giải >>
Bài 11 :

Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 12 :

Cho tam giác \(ABC\) cân tại \(A\) , đường cao \(CE\) . Tính \(AB\) , biết \(BC = 24\) cm và \(BE = 9\) cm.

Xem lời giải >>
Bài 13 :

Cho hình vẽ:

Chọn đáp án đúng

Xem lời giải >>
Bài 14 :

Cho hình vẽ:

Chọn đáp án đúng

Xem lời giải >>
Bài 15 :

Cho tam giác ABC cân tại A, \(AC = 20cm,BC = 24cm.\) Các đường cao AD và CE cắt nhau tại H. Khi đó,

Xem lời giải >>
Bài 16 :

Cho tam giác ABC vuông tại A, đường cao AH chia đoạn BC thành hai đoạn thẳng \(HB = 7cm,HC = 18cm.\) Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau. Khi đó,

Xem lời giải >>
Bài 17 :

Cho hình bình hành ABCD \(\left( {AC > AB} \right)\) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD và H là hình chiếu của B trên AC.

Chọn đáp án đúng.

Xem lời giải >>
Bài 18 :

Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Khi đó:

Xem lời giải >>
Bài 19 :

Cho tam giác ABC cân tại A, đường cao CE. Biết rằng \(BE = 3cm,BC = 8cm.\)

Độ dài đoạn thẳng AB là:

Xem lời giải >>
Bài 20 :

Cho hình vẽ. Khẳng định nào sao đây đúng

Xem lời giải >>
Bài 21 :

Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Hệ thức nào sau đây đúng?

Xem lời giải >>
Bài 22 :

Cho hình thang vuông \(ABCD\), \(\left( {\widehat A = \widehat D = 90^\circ } \right)\) có \(DB \bot BC\), \(AB = 4\,{\rm{cm}}\), \(CD = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là

Xem lời giải >>
Bài 23 :

Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\) biết \(BH = 4\,{\rm{cm}}\), \(CH = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(AH\) là

Xem lời giải >>
Bài 24 :

Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 30\,{\rm{cm}}\), \(AC = 40\,{\rm{cm}}\). Kẻ đường cao \(AH\)\(\left( {H \in BC} \right)\). Độ dài đường cao \(AH\) là

Xem lời giải >>
Bài 25 :

\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài  đoạn thẳng \(BK\) là

Xem lời giải >>
Bài 26 :

Một người đo chiều cao của một cái cây bằng cách cắm một chiếc cọc xuống đất, cọc cao 2,4m và cách vị trí gốc cây 19m. Người đo đứng cách xa chiếc cọc 1m và nhìn thấy đỉnh cọc thẳng với đỉnh của cây. Hãy tính chiều cao của cây, biết rằng khoảng cách từ chân đến mắt người ấy là 1,6m(H9.51)

A: Vị trí đỉnh cây

B: Vị trí gốc cây

C: Vị trí đỉnh cột.

D: Vị trí mắt

Xem lời giải >>
Bài 27 :

Nam và Việt muốn đo chiều cao của cột cờ ở sân trường mà hai bạn không trèo lên được. Vào buổi chiều, Nam đo thấy bóng của cột cờ dài 6m và bóng của Việt dài 70cm. Nam hỏi Việt cao bao nhiêu, Việt trả lời là cao 1,4m. Nam liền reo lên: "Tớ biết cột cờ cao bao nhiêu rồi đấy" Vậy cột cờ cao bao nhiêu và làm sao bạn Nam biết được.

Ta thấy chiếc cột cùng với bóng của nó tạo thành hai cạnh góc vuông của tam giác ABC vuông tại đỉnh A, bạn Việt và bóng của mình cũng được xem là hai canh góc vuông của tam giác A'B'C' vuông tại đỉnh A'. Vì các tia sáng mặt trời tạo với hai cái bóng các góc bằng nhau nên \(\widehat B = \widehat {B'}\)

a) Hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không?

b) Bạn Nam đã tính chiều cao chiếc cột, tức là độ dài đoạn thẳng AC như thế nào và kết quả là bao nhiêu?


Xem lời giải >>
Bài 28 :

Cho góc nhọn xOy, các điểm A, N nằm trên tia Ox, các điểm B, M nằm trên tia Oy sao cho AM, BN lần lượt vuông góc với Oy, Ox. Chứng minh tam giác OAM đồng dạng với tam giác OBN.

Xem lời giải >>
Bài 29 :

Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho AM = 2 m, AM vuông góc với AB và đo được số đo góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A'M'B' vuông tại A' có AM' = 1cm, \(\widehat {A'M'B'} = \widehat {AMB}\) và đo được A'B' = 5 cm (H.9.56). Hỏi khoảng cách từ A đến B là bao nhiêu mét?

 

Xem lời giải >>
Bài 30 :

Cho tam giác ABC có AB=6cm, AC=8cm, BC=10cm. Cho điểm M nằm trên cạnh BC sao cho BM=4cm. Vẽ đường thẳng MN vuông góc với AC tại N và đường thẳng MP vuông góc với AB.

a) Chứng minh ΔBMP ∽ ΔMCN 

b) Tính độ dài đoạn thẳng AM

Xem lời giải >>