Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
-
A.
DK = 9
-
B.
\(\widehat {E{{D}}H} = {90^o}\)
-
C.
DK = 10
-
D.
\(\widehat {DHK} = {90^o}\)
Ta có DE // HK nên: \(\widehat {E{{D}}H} = \widehat {DHK} = {90^o}\) (so le trong)
Áp dụng định lí Pythagore trong tam giác vuông DHK ta được:
\(D{K^2} = D{H^2} + H{K^2}\)
\(D{K^2} = {8^2} + {\left( {\sqrt {17} } \right)^2}\)
\(D{K^2} = 64 + 17 = 81 = {9^2}\\DK = 9\)
Đáp án : C
Các bài tập cùng chuyên đề
Chọn phát biểu đúng nhất về định lí Pythagore:
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Cho hình vẽ. Tính x.
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Cho hình vẽ sau. Tính \(x\).
Lựa chọn phương án đúng nhất:
Cho tam giác ABC vuông tại B, khi đó:
Tam giác ABC có AB = 3 cm, AC = 4cm, BC = 5cm. Tam giác ABC là tam giác gì?
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Tìm câu sai trong các câu sau đây. Cho tam giác PQR vuông tại P. Khi đó:
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Tìm x trong hình vẽ sau:
Tìm x trong hình vẽ sau:
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.