Đề bài

Cho tam giác \(ABC\) có \(AB = AC.\) Trên các cạnh \(AB\) và \(AC\) lấy các điểm \(D,E\) sao cho \(AD = AE.\) Gọi \(K\) là giao điểm của \(BE\) và \(CD\). Chọn câu sai.

  • A.

    \(BE = CD\) 

  • B.

    $BK = KC$   

  • C.

    \(BD = CE\) 

  • D.

    \(DK = KC\)

Phương pháp giải

Dựa vào tính chất hai tam giác bằng nhau

Lời giải của GV Loigiaihay.com

Xét tam giác \(ABE\) và tam giác \(ACD\) có

+ \(AE = AD\left( {gt} \right)\)

 + Góc \(A\) chung

+ \(AB = AC\left( {gt} \right)\)

Suy ra \(\Delta ABE = \Delta ACD\left( {c - g - c} \right)\) \( \Rightarrow \widehat {ABE} = \widehat {ACD};\widehat {ADC} = \widehat {AEB}\) (hai góc tương ứng) và \(BE = CD\) (hai cạnh tương ứng) nên A đúng.

Lại có \(\widehat {ADC} + \widehat {BDC} = 180^\circ \); \(\widehat {AEB} + \widehat {BEC} = 180^\circ \) (hai góc kề bù) mà \(\widehat {ADC} = \widehat {AEB}\) (cmt)

Suy ra \(\widehat {BDC} = \widehat {BEC}.\)

Lại có \(AB = AC;\,AD = AE\left( {gt} \right)\) \( \Rightarrow AB - AD = AC - AE \Rightarrow BD = EC\) nên C đúng.

Xét tam giác \(KBD\) và tam giác \(KCE\) có

+ \(\widehat {ABE} = \widehat {ACD}\,\left( {cmt} \right)\)

+ \(BD = EC\,\left( {cmt} \right)\)

+  \(\widehat {BDC} = \widehat {BEC}\,\left( {cmt} \right)\)

Nên \(\Delta KBD = \Delta KCE\left( {g - c - g} \right)\) \( \Rightarrow KB = KC;\,KD = KE\) (hai cạnh tương ứng)  nên B đúng, D sai.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác \(ABC\) và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$  bằng nhau theo trường hợp góc – cạnh – góc ?

  • A.

    \(\widehat M = \widehat A\)

  • B.

    \(\widehat A = \widehat P\)

  • C.

    \(\widehat C = \widehat M\)

  • D.

    \(\widehat A = \widehat N\)

Xem lời giải >>
Bài 2 :

Cho tam giác $ABC$  và tam giác $MNP$  có  \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điều kiện gì để tam giác $ABC$  và tam giác $MNP$  bằng nhau theo trường hợp góc – cạnh – góc:

  • A.

    $AC = MP$               

  • B.

    $AB = MN$

  • C.

    $BC = NP$

  • D.

    $AC = MN$

Xem lời giải >>
Bài 3 :

Cho tam giác $ABC$  và tam giác $MNP$ có  $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:

  • A.

    \(\Delta ABC = \Delta PMN\)

  • B.

    \(\Delta ACB = \Delta PNM\)

  • C.

    \(\Delta BAC = \Delta MNP\)          

  • D.

    \(\Delta ABC = \Delta PNM\)

Xem lời giải >>
Bài 4 :

Cho góc nhọn $xOy,Oz$ là tia phân giác của góc đó. Qua điểm $A$  thuộc tia $Ox$  kẻ đường thẳng song song với $Oy$ cắt $Oz$ ở $M.$ Qua $M$ kẻ đường thẳng song song với $Ox$ cắt $Oy$ ở $B.$ Chọn câu đúng. 

  • A.

    $OA > OB;MA > MB$

  • B.

    $OA = OB;MA = MB$        

  • C.

    $OA < OB;MA < MB$

  • D.

    $OA < OB;MA = MB$

Xem lời giải >>
Bài 5 :

Cho đoạn thẳng \(AB,O\) là trung điểm của \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB\) vẽ các tia \(Ax;By\) vuông góc với \(AB.\) Gọi \(C\) là một điểm thuộc tia \(Ax.\) Đường vuông góc với \(OC\) tại ${\rm{O}}$ cắt tia \(By\) ở \(D.\) Khi đó

  • A.

    \(BD = CD + AC\) 

  • B.

    \(AC = DC + BD\)   

  • C.

    \(CD = AC - BD\) 

  • D.

    \(CD = AC + BD\)

Xem lời giải >>
Bài 6 :

Cho tam giác $DEF$  và tam giác $HKG$  có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$  là:

  • A.

    \({70^0}\)

  • B.

    \({80^0}\)

  • C.

    \({90^0}\)       

  • D.

    \({100^0}\)

Xem lời giải >>
Bài 7 :

Cho tam giác $ABC$  và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$  là:

  • A.

    $4cm\;\;\;\;$

  • B.

    $5cm$                                     

  • C.

    $6cm\;\;\;\;$  

  • D.

    $7cm$

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$  vuông tại $A$  có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$  sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$  và $CE$  vuông góc với $xy.$ Chọn câu đúng.

  • A.

    $DE = BD + CE$      

  • B.

    $DE = BD - CE$                       

  • C.

    $CE = BD + DE$

  • D.

    $CE = BD - DE$

Xem lời giải >>
Bài 9 :

Cho tam giác $ABC,D$ là trung điểm của $AB.$  Đường thẳng qua $D$  và song song với $BC$  cắt $AC$  ở $E,$  đường thẳng qua $E$  và song song với $AB$  cắt $BC$  ở $F.$ Khi đó

  • A.

    \(\Delta ADE = \Delta EFC\)

  • B.

    \(\Delta ADE = \Delta DBF\)                       

  • C.

    \(\Delta EFC = \Delta DBF\)           

  • D.

    Cả A, B, C đều đúng.

Xem lời giải >>
Bài 10 :

Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)

  • A.

    \(ID = 4cm\)

  • B.

    \(ID = 2cm\)

  • C.

    \(ID = 8cm\)

  • D.

    \(ID = 3cm\)

Xem lời giải >>
Bài 11 :

Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng:

  • A.

    \(AB = CD\)

  • B.

    \(AB > CD\)

  • C.

    \(AB < CD\)

  • D.

    \(AC > BD\)

Xem lời giải >>