Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)
-
A.
\(ID = 4cm\)
-
B.
\(ID = 2cm\)
-
C.
\(ID = 8cm\)
-
D.
\(ID = 3cm\)
+ Kẻ tia phân giác của \(\widehat {BIC}\) cắt \(BC\) tại \(H\)
+ Sử dụng tính chất tia phân giác, định lí tổng ba góc của một tam giác chứng minh \(\widehat {CID} = \widehat {BIE} = \widehat {BIH} = \widehat {HIC} = 60^\circ \).
+ Áp dụng trường hợp bằng nhau thứ ba của tam giác: “Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau” ta chứng minh \(\Delta BIE = \Delta BIH\), \(\Delta CID = \Delta CIH\).
+ Từ đó ta tính được độ dài \(ID\).
Vì \(BD\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}\widehat {ABC}\)
Vì \(CE\) là tia phân giác của \(\widehat {ACB}\) nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}\widehat {ACB}\)
Xét \(\Delta ABC\) có: \(\widehat A + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (tổng ba góc của một tam giác bằng \(180^\circ \))
Mà \(\widehat A = 60^\circ \) nên \(\widehat {ABC} + \widehat {ACB} = 180^\circ - \widehat A = 180^\circ - 60^\circ = 120^\circ \)
Ta lại có: \(\widehat {{B_2}} + \widehat {{C_2}} = \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}(\widehat {ABC} + \widehat {ACB}) = \dfrac{1}{2}.120^\circ = 60^\circ \)
Xét \(\Delta BIC\) có \(\widehat {BIC} + \widehat {{B_2}} + \widehat {{C_2}} = 180^\circ \) (tổng ba góc của một tam giác bằng \(180^\circ \))
Mà \(\widehat {{B_2}} + \widehat {{C_2}} = 60^\circ \) nên \(\widehat {BIC} = 180^\circ - (\widehat {{B_2}} + \widehat {{C_2}}) = 180^\circ - 60^\circ = 120^\circ \)
Mặt khác: \(\widehat {BIC} + \widehat {BIE} = 180^\circ \) (hai góc kề bù) \( \Rightarrow \widehat {BIE} = 180^\circ - \widehat {BIC} = 180^\circ - 120^\circ = 60^\circ \)
Khi đó \(\widehat {CID} = \widehat {BIE} = 60^\circ \) (hai góc đối đỉnh) \((1)\)
Kẻ tia phân giác của \(\widehat {BIC}\) cắt \(BC\) tại \(H\)
Suy ra \(\widehat {BIH} = \widehat {HIC} = \dfrac{1}{2}.\widehat {BIC} = \dfrac{1}{2}.120^\circ = 60^\circ \)\((2)\)
Từ \((1)\) và \((2)\) suy ra \(\widehat {CID} = \widehat {BIE} = \widehat {BIH} = \widehat {HIC}\)
Xét tam giác \(BIE\) và tam giác \(BIH\) có:
\(\widehat {{B_1}} = \widehat {{B_2}}\) (cmt)
\(BI\) là cạnh chung
\(\widehat {BIE} = \widehat {BIH}\) (cmt)
\( \Rightarrow \Delta BIE = \Delta BIH \,(g.c.g) \Rightarrow IE = IH\) (hai cạnh tương ứng) \((3)\)
Xét tam giác \(CID\) và tam giác \(CIH\) có:
\(\widehat {{C_1}} = \widehat {{C_2}}\) (cmt)
\(CI\) là cạnh chung
\(\widehat {CID} = \widehat {HIC}\) (cmt)
\( \Rightarrow \Delta CID = \Delta CIH \,(g.c.g) \Rightarrow ID = IH\) (hai cạnh tương ứng) \((4)\)
Từ \((3)\) và \((4)\) suy ra \(ID = IE = 2cm\)
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác \(ABC\) và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$ bằng nhau theo trường hợp góc – cạnh – góc ?
Cho tam giác $ABC$ và tam giác $MNP$ có \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điểu kiện gì để tam giác $ABC$ và tam giác $MNP$ bằng nhau theo trường hợp góc – cạnh – góc:
Cho tam giác $ABC$ và tam giác $MNP$ có $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:
Cho góc nhọn $xOy,Oz$ là tia phân giác của góc đó. Qua điểm $A$ thuộc tia $Ox$ kẻ đường thẳng song song với $Oy$ cắt $Oz$ ở $M.$ Qua $M$ kẻ đường thẳng song song với $Ox$ cắt $Oy$ ở $B.$ Chọn câu đúng.
Cho đoạn thẳng \(AB,O\) là trung điểm của \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB\) vẽ các tia \(Ax;By\) vuông góc với \(AB.\) Gọi \(C\) là một điểm thuộc tia \(Ax.\) Đường vuông góc với \(OC\) tại ${\rm{O}}$ cắt tia \(By\) ở \(D.\) Khi đó
Cho tam giác \(ABC\) có \(AB = AC.\) Trên các cạnh \(AB\) và \(AC\) lấy các điểm \(D,E\) sao cho \(AD = AE.\) Gọi \(K\) là giao điểm của \(BE\) và \(CD\). Chọn câu sai.
Cho tam giác $DEF$ và tam giác $HKG$ có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$ là:
Cho tam giác $ABC$ và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$ là:
Cho tam giác $ABC$ vuông tại $A$ có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$ sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$ và $CE$ vuông góc với $xy.$ Chọn câu đúng.
Cho tam giác $ABC,D$ là trung điểm của $AB.$ Đường thẳng qua $D$ và song song với $BC$ cắt $AC$ ở $E,$ đường thẳng qua $E$ và song song với $AB$ cắt $BC$ ở $F.$ Khi đó
Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng: