Đề bài

Định lý sau được phát biểu thành lời là:

  • A.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.

  • B.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó song song với đường thẳng kia.

  • C.

    Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó tạo với đường thẳng kia một góc \(60^\circ .\)

  • D.

    Cả A, B, C đều sai.

Phương pháp giải

Giả thiết của định lí là điều cho biết. Kết luận của định lí là điều được suy ra.

Lời giải của GV Loigiaihay.com

Định lý: Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chứng minh định lý là

  • A.

    Dùng lập luận để từ giả thiết suy ra kết luận

  • B.

    Dùng hình vẽ để từ giả thiết suy ra kết luận

  • C.

    Dùng đo đạc thực tế để từ giả thiết suy ra kết luận

  • D.

    Cả A, B, C đều sai

Xem lời giải >>
Bài 2 :

Trong các câu sau, câu nào cho một định lí

  • A.

    Đường thẳng nào vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.

  • B.

    Đường thẳng nào vuông góc với một trong hai đường thẳng cắt nhau thì song song với đường thẳng kia.

  • C.

    Nếu hai đường thẳng AB và AC cùng song song với một đường thẳng thứ ba thì hai đường thẳng đó song song.

  • D.

    Nếu hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song.

Xem lời giải >>
Bài 3 :

Cho định lý: “Nếu hai đường thẳng song song cắt đường thẳng thứ ba thì hai góc đồng vị bằng nhau” (xem hình vẽ dưới đây). Giả thiết của định lý là

  • A.

    \(a//b;\,a \bot c\) 

  • B.

    \(a//b,\) \(c \cap a = \left\{ A \right\};c \cap b = \left\{ B \right\}\)

  • C.

    \(a//b;\,a//c\)

  • D.

    \(a//b,\) \(c\) bất kì.

Xem lời giải >>
Bài 4 :

Cho định lý: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” (hình vẽ). Giả thiết, kết luận của định lý là:

  • A.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OE \bot OF\)

  • B.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOF\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OE \bot OA\)

  • C.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOE\).

    Kết luận: \(OE \bot OF\)

  • D.

    Giả thiết: Cho góc bẹt \(AOB\) và tia \(OD.\) \(OE\) là phân giác góc \(BOD\); \(OF\) là phân giác góc \(AOD\).

    Kết luận: \(OB \bot OF\)

Xem lời giải >>
Bài 5 :

Phát biểu định lý sau bằng lời:

  • A.

    Nếu một đường thẳng cắt hai đường thẳng phân biệt thì chúng song song với nhau.

  • B.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng vuông góc với nhau.

  • C.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

  • D.

    Nếu hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng cắt nhau.

Xem lời giải >>
Bài 6 :

Chọn câu đúng.

  • A.

    Giả thiết của định lý là điều cho biết.

  • B.

    Kết luận của định lý là điều được suy ra.

  • C.

    Giả thiết của định lý là điều được suy ra.

  • D.

    Cả A, B đều đúng.

Xem lời giải >>