Trên một tuyến đường xe bus BRT, các xe bus chuyển động theo một chiều và cách đều nhau \(5km\). Một người đi xe đạp chuyển động thẳng đều trên tuyến đường này. Nếu đi theo một chiều thì tại thời điểm \(t = 0\), người đi xe đạp gặp xe bus thứ nhất, đến thời điểm \(t = 1h\) người này gặp xe bus thứ \(12\). Nếu đi theo chiều ngược lại thì thời điểm \(t = 0\), người đi xe đạp gặp xe bus thứ nhất, đến thời điểm \(t = 1h\) người này gặp xe bus thứ \(6\). Nếu người này đứng yên bên đường thì trong \(1h\) tính từ thời điểm gặp xe bus thứ nhất, người này còn gặp được bao nhiêu xe bus nữa? Bỏ qua kích thước của xe bus và xe đạp.
-
A.
8
-
B.
15
-
C.
18
-
D.
4
Xác định các thông số:
+ Số 1: gắn với vật cần tính vận tốc
+ Số 2: gắn với hệ quy chiếu là các vật chuyển động
+ Số 3: gắn với hệ quy chiếu là các vật đứng yên
+ \({v_{12}}\): vận tốc của vật so với hệ quy chiếu chuyển động
+ \({v_{23}}\): vận tốc của hệ quy chiếu chuyển động so với hệ quy chiếu đứng yên
+ \({v_{13}}\): vận tốc của vật so với hệ quy chiếu chuyển động
- Vận dụng công thức cộng vận tốc: \(\overrightarrow {{v_{13}}} = \overrightarrow {{v_{12}}} + \overrightarrow {{v_{23}}} \)
- Vận dụng biểu thức: \(S = vt\)
Ta có:
+ Người đi xe đạp (1)
+ Xe bus (2)
+ Đường (3)
+ Vận tốc của người đi xe đạp (1) so với xe bus (2): \({v_{12}}\)
+ Vận tốc của xe bus (2) so với đường (3): \({v_{23}}\)
+ Vận tốc của người đi xe đạp (1) so với đường (2): \({v_{13}}\)
Theo đề bài, ta có:
Sau \(1h\) gặp xe bus số \(12\) => Xe đạp chuyển động ngược chiều xe bus
Sau \(1h\) gặp xe bus số \(6\) => Xe đạp chuyển động cùng chiều xe bus
Xe đạp chuyển động ngược chiều với xe bus:
\(\begin{array}{l}{v_{13}} = {v_{23}} - {v_{12}}\\ \to {v_{12}} = {v_{23}} + {v_{13}} = \frac{S}{t} = \frac{{11.5}}{1} = 55km/h{\rm{ }}\left( 1 \right)\end{array}\)
Người đi xe đạp chuyển động cùng chiều với đoàn xe bus:
\(\begin{array}{l}{v_{13}} = {v_{23}} + {v_{12}}\\ \to {v_{12}} = {v_{23}} - {v_{13}} = \frac{S}{t} = \frac{{5.5}}{1} = 25km/h{\rm{ }}\left( 2 \right)\end{array}\)
Từ (1) và (2), ta suy ra: \({v_{23}} = 40km/h\)
=> Nếu người đó đứng yên thì số xe bus đi qua là: \(\frac{{40}}{5} = 8\)
Đáp án : A
Các bài tập cùng chuyên đề
Chọn phương án đúng,
Trạng thái đứng yên hay chuyển động có tính tương đối vì trạng thái chuyển động
Một hành khách ngồi trên toa tàu A, nhìn qua cửa sổ thấy toa tàu B bên cạnh và gạch lát sân ga đều chuyển động như nhau. Nếu lấy vật mốc là nhà ga thì:
Nhận xét nào sau đây của hành khách ngồi trên đoàn tàu đang chạy là không đúng?
Đứng ở Trái Đất ta sẽ thấy:
Biểu thức nào sau đây là biểu thức đúng của công thức cộng vận tốc:
Khẳng định nào sau đây là đúng. Từ công thức vận tốc: \(\overrightarrow {{v_{13}}} = \overrightarrow {{v_{12}}} + \overrightarrow {{v_{23}}} \), ta kết luận:
Một chiếc thuyền đi trong nước yên lặng với vận tốc có độ lớn \({v_1}\), vận tốc dòng chảy của nước so với bờ sông có độ lớn \({v_2}\). Nếu người lái thuyền hướng mũi thuyền dọc theo dòng nước từ hạ nguồn lên thượng nguồn của con sông thì một người đứng trên bờ sẽ thấy:
Muốn một vật từ một máy bay đang bay trên trời rơi thẳng đứng xuống mặt đất thì
Một chiếc thuyền chuyển động trên đoạn đường \(AB\) dài \(60km\). Vận tốc của thuyền là \(15km/h\) so với dòng nước yên lặng. Tính vận tốc dòng chảy của nước biết thời gian để thuyền đi từ \(A\) đến \(B\) rồi quay lại \(A\) là \(9\) tiếng?
Một chiếc thuyền chạy ngược dòng nước từ \(A\) đến \(B\) mất \(6\) giờ, xuôi dòng mất \(3\) giờ. Nếu tắt máy để thuyền tự trôi theo dòng nước thì đi từ bến \(A\) đến bến \(B\) mất mấy giờ?
Một chiếc thuyền xuôi dòng từ \(A\) đến \(B\), vận tốc của dòng nước \(5km/h\). Chiều dài từ \(A\) đến \(B\) là bao nhiêu? Biết thuyền xuôi dòng mất \(2\) giờ và ngược dòng mất \(3\) giờ trên cùng đoạn đường AB
Một chiếc thuyền chuyển động từ điểm $A$ của bờ này đến điểm $B$ của bờ kia của con sông, do nước chảy xiết thuyền không đến được bờ $B$ mà gần đến điểm $C$ cách bờ $180m$. Xác định vận tốc của thuyền so với dòng nước? Biết sông rộng $240m$, thời gian qua sông là $1$ phút
Một thang cuốn tự động đưa khách từ tầng $1$ lên tầng $2$ mất $1,4$ phút. Nếu không dùng thang người đi bộ phải mất khoảng thời gian là $4,6$ phút để đi từ tầng $1$ lên tầng $2$. Coi vận tốc của người đi bộ và thang cuốn là không đổi. Nếu thang cuốn vẫn chuyển động và người đó vẫn bước đi trên thang cuốn thì thời gian từ tầng $1$ lên tầng $2$ là bao nhiêu?
Ở một đoạn sông thẳng, dòng nước có vận tốc \({v_0}\), một người từ vị trí \(A\) ở bờ sông này muốn chèo thuyền tới vị trí \(B\) ở bờ sông bên kia. Cho \(AC = 4,CB = 3\). Độ lớn nhỏ nhất của vận tốc thuyền so với nước mà người này phải chèo đều để đến \(B\) là:
Một chiếc xe đang chạy với vận tốc \(18km/h\) trong mưa, giả sử mưa rơi thẳng đứng và đều đối với mặt đất. Người ngồi trên xe thấy các giọt mưa tạo một góc \({30^0}\) so với phương thẳng đứng. Vận tốc rơi của hạt mưa đối với đất có giá trị là:
Một chiếc thuyền chạy ngược dòng trên một đoạn sông thẳng, sau 1 giờ đi được 9km so với bờ. Một đám củi khô trôi trên sông đó, sau 1 phút trôi được 50m so với bờ. Vận tốc của thuyền so với nước là:
Một tàu thủy chở hàng đi xuôi dòng sông trong 4 giờ đi được 100 km, khi chạy ngược dòng trong 4 giờ thì đi được 60 km. Tính vận tốc của tàu so với nước. Coi vận tốc của nước đối bờ là luôn luôn không đổi.
Một canô xuôi dòng từ bến A đến bến B mất 4 giờ, còn nếu đi ngược dòng từ bến B đến bến A hết 9 giờ. Biết dòng nước chảy với tốc độ 10 km/h. Độ lớn vận tốc của canô so với dòng nước là bao nhiêu?
A ngồi trên một toa tàu chuyển động với vận tốc 15 km/h đang rời ga. B ngồi trên một toa tàu khác chuyển động với vận tốc 10 km/h đang vào ga. Hai đường tàu song song với nhau. Tính vận tốc của B đối với A. Chọn chiều dương là chiều chuyển động của tàu A.