Đề bài

Một chiếc thuyền xuôi dòng từ \(A\) đến \(B\), vận tốc của dòng nước \(5km/h\). Chiều dài từ \(A\) đến \(B\) là bao nhiêu? Biết thuyền xuôi dòng mất \(2\) giờ và ngược dòng mất \(3\) giờ trên cùng đoạn đường AB

  • A.

    30km

  • B.

    60km

  • C.

    45km

  • D.

    50km

Phương pháp giải

Xác định các thông số:

     + Số 1: gắn với vật cần tính vận tốc

     + Số 2: gắn với hệ quy chiếu là các vật chuyển động

     + Số 3: gắn với hệ quy chiếu là các vật đứng yên

     + \({v_{12}}\): vận tốc của vật so với hệ quy chiếu chuyển động

     + \({v_{23}}\): vận tốc của hệ quy chiếu chuyển động so với hệ quy chiếu đứng yên

     + \({v_{13}}\): vận tốc của vật so với hệ quy chiếu chuyển động

- Vận dụng công thức cộng vận tốc:  \(\overrightarrow {{v_{13}}}  = \overrightarrow {{v_{12}}}  + \overrightarrow {{v_{23}}} \)

- Vận dụng biểu thức: \(S = vt\)

Lời giải của GV Loigiaihay.com

Ta có:

+ Thuyền (1)

+ Dòng nước (2)

+ Bờ sông (3)

+ Vận tốc của thuyền (1) so với dòng nước (2): \({v_{12}}\)

+ Vận tốc của dòng nước (2) so với bờ (3): \({v_{23}}\)

+ Vận tốc của thuyền (1) so với bờ (2): \({v_{13}}\)

- Khi xuôi dòng: \(v{'_{13}} = {v_{12}} + {v_{23}}\)

Khi thuyền ngược dòng: \({v_{13}} = {v_{12}} - {v_{23}}\)

- Gọi \({t_1},{t_2}\) lần lượt là thời gian đi xuôi dòng và đi ngược dòng của thuyền, ta có:

\(\left\{ \begin{array}{l}{t_1} = \frac{{AB}}{{{v_{13}}}} = \frac{{AB}}{{{v_{12}} + {v_{23}}}} = 2{\rm{       }}\left( 1 \right)\\{t_2} = \frac{{AB}}{{v{'_{13}}}} = \frac{{AB}}{{{v_{12}} - {v_{23}}}} = 3{\rm{       }}\left( 2 \right)\end{array} \right.\)

Từ (1) và (2), ta suy ra:

\(\begin{array}{l}2{v_{12}} + 2{v_{23}} = 3{v_{12}} - 3{v_{23}}\\ \to {v_{12}} = 5{v_{23}} = 5.5 = 25km/h\end{array}\)

Thế vào (1), ta được: \(AB = 2\left( {{v_{12}} + {v_{23}}} \right) = 2\left( {25 + 5} \right) = 60km\)

Đáp án : B