Lý thuyết Cấp số nhân - SGK Toán 11 Cùng khám phá>
1. Cấp số nhân
1. Cấp số nhân
Cấp số nhân là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q, nghĩa là:
\({u_n} = {u_{n - 1}}.q,n \in {\mathbb{N}^*}\)
Số q được gọi là công bội của cấp số nhân.
* Chú ý:
- Nếu q = 1 thì cấp số nhân là dãy số không đổi: \({u_1},{u_1},...,{u_1},...\)
- Dãy \(\left( {{u_n}} \right)\) là cấp số nhân thì \({u_k}^2 = {u_{k - 1}}.{u_{k + 1}}\left( {k \ge 2} \right)\).
2. Số hạng tổng quát của cấp số nhân
Nếu một cấp số nhân có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\)của nó được xác định bởi công thức
\({u_n} = {u_1}.{q^{n - 1}},n \ge 2\)
3. Tổng của n số hạng đầu của một cấp số nhân
Cho cấp số nhân \(\left( {{u_n}} \right)\)với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\). Khi đó
\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
- Giải mục 1 trang 53 SGK Toán 11 tập 1 - Cùng khám phá
- Giải mục 2 trang 54 SGK Toán 11 tập 1 - Cùng khám phá
- Giải mục 3 trang 54, 55 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 2.10 trang 55 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 2.11 trang 55 SGK Toán 11 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá