Lý thuyết Các quy tắc tính đạo hàm - SGK Toán 11 Cùng khám phá>
A. Lý thuyết 1. Đạo hàm của một số hàm số thường gặp
A. Lý thuyết
1. Đạo hàm của một số hàm số thường gặp
Hàm số \(y = {x^n}\) \((n \in {\mathbb{N}^*})\) có đạo hàm tại mọi \(x \in \mathbb{R}\) và \(({x^n})' = n{x^{n - 1}}\). |
Ghi chú:
+ c’ = 0.
+ x’ = 1.
+ \((\sqrt x )' = \frac{1}{{2\sqrt x }}\) \((x \ne 0)\).
+ \(\left( {\frac{1}{x}} \right)' = - \frac{1}{{{x^2}}}\) \((x \ne 0)\).
2. Các quy tắc tính đạo hàm
a) Đạo hàm của tổng, hiệu hai hàm số
Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm trên khoảng (a;b) thì (u + v)’= u’ + v’; (u – v)’ = u’ – v’. |
b) Đạo hàm của tích, thương hai hàm số
Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm trên khoảng xác định thì (u.v)’ = u’v + uv’; \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\) \((v = v(x) \ne 0)\). |
Lưu ý:
+ (k.u)’ = ku’ với \(k \in \mathbb{R}\).
+ \(\left( {\frac{k}{v}} \right)' = \frac{{kv'}}{{{v^2}}}\) với \(k \in \mathbb{R}\).
c) Đạo hàm của hàm hợp
* Hàm hợp
Cho hai hàm số f(u) và u = u(x). Hàm số y = f(u(x)) được gọi là hàm số hợp của hai hàm số f(u) và u(x).
* Đạo hàm của hàm hợp
Nếu hàm số u = u(x) có đạo hàm tại x là u’(x) và u = f(u) có đạo hàm tại u là f’(u) thì hàm hợp g(x) = f(u(x)) có đạo hàm tại x là g’(x) = f’(u).u’(x). |
3. Đạo hàm của một số hàm số khác
a) Đạo hàm của hàm số lượng giác
+ (sinx)’ = cosx + (cosx)’ = -sinx + \((\tan x)' = \frac{1}{{{{\cos }^2}x}}\), \(x \ne \frac{\pi }{2} + k\pi \) \((k \in \mathbb{Z})\) + \((\cot x)' = - \frac{1}{{{{\sin }^2}x}}\), \(x \ne k\pi \) \((k \in \mathbb{Z})\) |
b) Đạo hàm của hàm số mũ và hàm số logarit
Cho a > 0, \(a \ne 1\). + \(({a^x})' = {a^x}\ln a\) + \(({e^x})' = {e^x}\), \(x \in \mathbb{R}\) + \(({\log _a}x)' = \frac{1}{{x\ln a}}\), x > 0 + \((\ln x)' = \frac{1}{x}\), x > 0 |
B. Bài tập
Bài 1: Tính đạo hàm của hàm số \(y = {x^5} - {x^3} + x - 10\).
Giải:
\(y' = \left( {{x^5}} \right)' - \left( {{x^3}} \right)' + \left( x \right)' - \left( {10} \right)' = 5{x^4} - 3{x^2} + 1\).
Bài 2: Tính đạo hàm của các hàm số sau:
a) \(y = 4{x^2} - \frac{{\sqrt x }}{2} + \frac{5}{x}\).
b) \(y = (2{x^3} + 1)(\sqrt x - 3)\).
c) \(y = \frac{{2x - 1}}{{x + 1}}\).
Giải:
a) Với x > 0, ta có \(y = 4\left( {{x^2}} \right)' - \frac{1}{2}\left( {\sqrt x } \right)' + 5\left( {\frac{1}{x}} \right)' = 8x - \frac{1}{{4\sqrt x }} - \frac{5}{{{x^2}}}\).
b) Với x > 0, ta có \(y' = (2{x^3} + 1)'(\sqrt x - 3) + (2{x^3} + 1)(\sqrt x - 3)' = 6{x^2}(\sqrt x - 3) + (2{x^3} + 1)\frac{1}{{2\sqrt x }}\).
c) Với \(x \ne - 1\), ta có \(y' = \frac{{\left( {2x - 1} \right)'\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{2(x + 1) - (2x - 1)}}{{{{\left( {x + 1} \right)}^2}}} = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).
Bài 3: Tính đạo hàm của các hàm số sau:
a) \(y = {({x^2} + x)^8}\).
b) \(y = \frac{1}{{\sqrt x + 1}}\).
Giải:
a) \(y = \left[ {{{({x^2} + x)}^8}} \right]' = ({x^2} + x)'.8{({x^2} + x)^{8 - 1}} = 8(2x + 1){({x^2} + x)^7}\).
b) \(y' = \left( {\frac{1}{{\sqrt x + 1}}} \right)' = \frac{{\left( {\sqrt x + 1} \right)'}}{{{{\left( {\sqrt x + 1} \right)}^2}}} = \frac{1}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{1}{{2\sqrt x }}\).
Bài 4: Tính đạo hàm của các hàm số sau:
a) \(y = 2\sin x - 3\cos x\).
b) \(y = x\tan x\).
c) \(y = \sin \left( {2x - \frac{\pi }{6}} \right)\).
d) \(y = {\cos ^3}3x\).
Giải:
a) \(y' = 2\left( {\sin x} \right)' - 3\left( {\cos x} \right)' = 2\cos x + 3\sin x\).
b) Với \(x \ne \frac{\pi }{2} + k\pi \) \((k \in \mathbb{Z})\), ta có \(y = x'.\tan x + x.(\tan x)' = \tan x + \frac{x}{{{{\cos }^2}x}}\).
c) \(y = \sin \left( {2x - \frac{\pi }{6}} \right)\).
d) \(y' = 3{\cos ^2}3x.(\cos 3x)' = - 3{\cos ^2}3x.(3x)'.\sin 3x = - 9{\cos ^2}3x.\sin 3x\).
Bài 5: Tính đạo hàm của các hàm số sau:
a) \(y = {3^{2{x^2} - x}}\).
b) \(y = {\log _2}({x^2} + 2x + 3)\).
c) \(y = x{e^x}\).
Giải:
a) \(y' = (2{x^2} - x)'{.3^{2{x^2} - x}}.\ln 3 = (4x - 1){.3^{2{x^2} - x}}.\ln 3\).
b) \(y' = \frac{{({x^2} + 2x + 3)'}}{{({x^2} + 2x + 3)\ln 2}} = \frac{{2x + 2}}{{({x^2} + 2x + 3)\ln 2}}\).
c) \(y' = (x)'{e^x} + x({e^x})' = {e^x} + x{e^x}\).
- Giải mục 1 trang 38, 39 SGK Toán 11 tập 2 - Cùng khám phá
- Giải mục 2 trang 39, 40, 41, 42 SGK Toán 11 tập 2 - Cùng khám phá
- Giải mục 3 trang 42, 43, 44, 45 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 7.6 trang 45 SGK Toán 11 tập 2 - Cùng khám phá
- Bài 7.7 trang 45 SGK Toán 11 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá