Giải bài 5 trang 65 vở thực hành Toán 7>
Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\)
Đề bài
Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\)
Phương pháp giải - Xem chi tiết
Hai tam giác bằng nhau thì các góc tương ứng bằng nhau.
Lời giải chi tiết
GT |
\(\Delta ABC = \Delta DEF,X \in AC,Y \in DF,AX = DY\) |
KL |
\(\widehat {BXC} = \widehat {EYF}\) |
Vì \(\Delta ABC = \Delta DEF\) nên ta có AC = DF, BC = EF, \(\widehat C = \widehat F\)
Từ đây ta suy ra CX = AC – AX = DF – DY = FY.
Xét hai tam giác CBX và FEY ta có
BC = EF, \(\widehat C = \widehat F\), CX = FY (chứng minh trên)
Vậy \(\Delta CBX = \Delta FEY\left( {c.g.c} \right)\). Điều này kéo theo rằng \(\widehat {BXC} = \widehat {EYF}\)(đpcm).
- Giải bài 6 trang 66 vở thực hành Toán 7
- Giải bài 4 (4.15) trang 65 vở thực hành Toán 7
- Giải bài 3 (4.14) trang 65 vở thực hành Toán 7
- Giải bài 2 (4.13) trang 64 vở thực hành Toán 7
- Giải bài 1 (4.12) trang 64 vở thực hành Toán 7
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay