

Giải bài 5 trang 65 vở thực hành Toán 7>
Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\)
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\)
Phương pháp giải - Xem chi tiết
Hai tam giác bằng nhau thì các góc tương ứng bằng nhau.
Lời giải chi tiết
GT |
\(\Delta ABC = \Delta DEF,X \in AC,Y \in DF,AX = DY\) |
KL |
\(\widehat {BXC} = \widehat {EYF}\) |
Vì \(\Delta ABC = \Delta DEF\) nên ta có AC = DF, BC = EF, \(\widehat C = \widehat F\)
Từ đây ta suy ra CX = AC – AX = DF – DY = FY.
Xét hai tam giác CBX và FEY ta có
BC = EF, \(\widehat C = \widehat F\), CX = FY (chứng minh trên)
Vậy \(\Delta CBX = \Delta FEY\left( {c.g.c} \right)\). Điều này kéo theo rằng \(\widehat {BXC} = \widehat {EYF}\)(đpcm).


- Giải bài 6 trang 66 vở thực hành Toán 7
- Giải bài 4 (4.15) trang 65 vở thực hành Toán 7
- Giải bài 3 (4.14) trang 65 vở thực hành Toán 7
- Giải bài 2 (4.13) trang 64 vở thực hành Toán 7
- Giải bài 1 (4.12) trang 64 vở thực hành Toán 7
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục