Giải bài 4.37 trang 72 SGK Toán 10 – Kết nối tri thức


Cho vectơ a khác 0. Chứng minh rằng 1/|a|. a (hay còn được viết là a/|a| là một vectơ đơn vị, cùng hướng với vectơ a.

Đề bài

Cho vectơ a0. Chứng minh rằng 1|a|a (hay còn được viết là a|a|) là một vectơ đơn vị, cùng hướng với vectơ a.

Lời giải chi tiết

Cho vectơ a0. Chứng minh rằng 1|a|a (hay còn được viết là a|a|) là một vectơ đơn vị, cùng hướng với vectơ a.

Lời giải chi tiết

Cách 1:

Gọi tọa độ của vectơ a là (x; y).

Ta có: |a|=x2+y2.

Đặt i=1|a|.a

i=1x2+y2.(x;y)=(xx2+y2;yx2+y2)

|i|=(xx2+y2)2+(yx2+y2)2=x2x2+y2+y2x2+y2=1

Mặt khác:

 i=1|a|.a=1x2+y2.a1x2+y2>0 với mọi x,y0

Do đó vectơ ia cùng hướng.

Vậy 1|a|a (hay a|a|) là một vectơ đơn vị, cùng hướng với vectơ a.

Cách 2:

Với mọi vectơ a0, ta có:  |a|>0k=1|a|>0. Đặt i=1|a|.a=k.a

|i|=|k.a|=|k|.|a||i|=k.|a|=1|a|.|a|=1

Mặt khác: i=1|a|.a=k.ak>0

Do đó vectơ ia cùng hướng.

Vậy 1|a|a (hay a|a|) là một vectơ đơn vị, cùng hướng với vectơ a.


Bình chọn:
4.4 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.