Giải bài 4.33 trang 71 SGK Toán 10 – Kết nối tri thức>
Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3 MC.
Đề bài
Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3 MC.
a) Tìm mối liên hệ giữa hai vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \)
b) Biểu thị vectơ \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Phương pháp giải - Xem chi tiết
+) Nếu \(MB = k.MC\) và \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng thì \(\overrightarrow {MB} = -k.\overrightarrow {MC}\)
+) \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \) (quy tắc cộng)
+) \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)
Lời giải chi tiết
a) M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.
Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB} = - 3.\overrightarrow {MC} \)
b) Ta có: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \)
Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM} = \dfrac{3}{4}\overrightarrow {BC} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\overrightarrow {BC} \)
Lại có: \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
Vậy \(\overrightarrow {AM} = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
- Giải bài 4.34 trang 72 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.35 trang 72 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.36 trang 72 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.37 trang 72 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.38 trang 72 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức