Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều>
Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ): (left( {{P_1}} right):5x + 12y - 13z + 14 = 0) và (left( {{P_2}} right):3x + 4y + 5z - 6 = 0).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ):
\(\left( {{P_1}} \right):5x + 12y - 13z + 14 = 0\) và \(\left( {{P_2}} \right):3x + 4y + 5z - 6 = 0\).
Phương pháp giải - Xem chi tiết
Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {5;12; - 13} \right)\).
Mặt phẳng \(\left( {{P_2}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {3;4;5} \right)\).
Côsin của góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) bằng:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {5.3 + 12.4 - 13.5} \right|}}{{\sqrt {{5^2} + {{12}^2} + {{\left( { - 13} \right)}^2}} .\sqrt {{3^2} + {4^2} + {5^2}} }} = \frac{1}{{65}}\).
Vậy \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) \approx {89^ \circ }\).
- Giải bài 39 trang 60 sách bài tập toán 12 - Cánh diều
- Giải bài 40 trang 60 sách bài tập toán 12 - Cánh diều
- Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều
- Giải bài 36 trang 60 sách bài tập toán 12 - Cánh diều
- Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều
>> Xem thêm