Giải bài 25 trang 57 sách bài tập toán 12 - Cánh diều


Đường thẳng (Delta ) có phương trình chính tắc là: (frac{{x + 1}}{{ - 7}} = frac{{y + 3}}{{ - 8}} = frac{{z - 2}}{1}). Phương trình tham số của (Delta ) là: A. (left{ begin{array}{l}x = 1 - 7t\y = 3 - 8t\z = - 2 + tend{array} right.). B. (left{ begin{array}{l}x = - 1 + 7t\y = - 3 + 8t\z = 2 + tend{array} right.). C. (left{ begin{array}{l}x = - 1 - 7t\y = 3 - 8t\z = 2 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 - 7t\y = - 3 - 8t\z =

Đề bài

Đường thẳng ΔΔ có phương trình chính tắc là: x+17=y+38=z21x+17=y+38=z21. Phương trình tham số của ΔΔ là:

A. {x=17ty=38tz=2+tx=17ty=38tz=2+t.

B. {x=1+7ty=3+8tz=2+tx=1+7ty=3+8tz=2+t.

C. {x=17ty=38tz=2+tx=17ty=38tz=2+t.

D. {x=17ty=38tz=2+tx=17ty=38tz=2+t.

Phương pháp giải - Xem chi tiết

Phương trình tham số của đường thẳng ΔΔ đi qua M0(x0;y0;z0)M0(x0;y0;z0) và có vectơ chỉ phương u=(a;b;c)u=(a;b;c) là: {x=x0+aty=y0+btz=z0+ctx=x0+aty=y0+btz=z0+ct.

Lời giải chi tiết

Đường thẳng ΔΔ có phương trình chính tắc là: x+17=y+38=z21x+17=y+38=z21 đi qua điểm M(1;3;2)M(1;3;2) và có vectơ chỉ phương u=(7;8;1)u=(7;8;1). Phương trình tham số của Δ là: {x=17ty=38tz=2+t.

Chọn D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 26 trang 57 sách bài tập toán 12 - Cánh diều

    Đường thẳng (Delta ) có phương trình tham số là: (left{ begin{array}{l}x = - 2 - 21t\y = 3 + 5t\z = - 6 - 19tend{array} right.). Phương trình chính tắc của (Delta ) là: A. (frac{{x + 21}}{{ - 2}} = frac{{y - 5}}{3} = frac{{z + 19}}{{ - 6}}). B. (frac{{x + 2}}{{ - 21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{ - 19}}). C. (frac{{x + 2}}{{21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{19}}). D. (frac{{x - 2}}{{ - 21}} = frac{{y + 3}}{5} = frac{{z - 6}}{{ - 19}}).

  • Giải bài 27 trang 57 sách bài tập toán 12 - Cánh diều

    Đường thẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với mặt phẳng (left( {Oxy} right)) có phương trình tham số là: A. (left{ begin{array}{l}x = {x_0}y = {y_0}z = tend{array} right.). B. (left{ begin{array}{l}x = ty = {y_0}z = {z_0}end{array} right.). C. (left{ begin{array}{l}x = {x_0}y = tz = {z_0}end{array} right.). D. (left{ begin{array}{l}x = {x_0} + ty = {y_0} + tz = {z_0} + tend{array} right.).

  • Giải bài 28 trang 57 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Côsin của góc giữa đường thẳng (Delta ) và trục (Oz) bằng: A. (frac{c}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}).

  • Giải bài 29 trang 58 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Sin của góc giữa đường thẳng (Delta ) và mặt phẳng (left( {Oyz} right)) bằng: A. (frac{{left| {a + b + c} right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a

  • Giải bài 30 trang 58 sách bài tập toán 12 - Cánh diều

    Cho (a,b) và (c) khác 0, côsin của góc giữa hai mặt phẳng (left( P right):ax + by + c = 0) và (left( Q right):by + cz + d = 0) bằng: A. (frac{{{b^2}}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). B. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2}} right)left( {{b^2} + {c^2}} right)} }}). C. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). D. (frac{

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.