Bài 3.38 trang 132 SBT đại số và giải tích 11


Giải bài 3.38 trang 132 sách bài tập đại số và giải tích 11. Chứng minh các đẳng thức sau với n ∈ N*...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các đẳng thức sau với \(n \in {N^*}\)

LG a

\({A_n} = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)\left( {n + 2} \right)}} \) \(= \dfrac{{n\left( {n + 3} \right)}}{{4\left( {n + 1} \right)\left( {n + 2} \right)}}\)

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\)

Lời giải chi tiết:

Kiểm tra với \(n = 1,\) ta có \({A_1} = \dfrac{1}{{1.2.3}} = \dfrac{1}{6} = \dfrac{{1.\left( {1 + 3} \right)}}{{4.2.3}}\).

Giả sử ta có \({A_k} = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + ... + \dfrac{1}{{k\left( {k + 1} \right)\left( {k + 2} \right)}} = \dfrac{{k\left( {k + 3} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}}\)

Ta cần chứng minh \({A_{k + 1}} = \dfrac{{\left( {k + 1} \right)\left( {k + 4} \right)}}{{4\left( {k + 2} \right)\left( {k + 3} \right)}}\)

Thật vậy,

\({A_{k + 1}} = {A_k} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\) \( = \dfrac{{k\left( {k + 3} \right)}}{{4\left( {k + 1} \right)\left( {k + 2} \right)}} + \dfrac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\)

\( = \dfrac{{k{{\left( {k + 3} \right)}^2} + 4}}{{4\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\) \( = \dfrac{{{k^3} + 6{k^2} + 9k + 4}}{{4\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\) \( = \dfrac{{\left( {k + 4} \right){{\left( {k + 1} \right)}^2}}}{{4\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}\) \( = \dfrac{{\left( {k + 1} \right)\left( {k + 4} \right)}}{{4\left( {k + 2} \right)\left( {k + 3} \right)}}\)

Vậy ta có điều phải chứng minh.

LG b

\({B_n} = 1 + 3 + 6 + 10 + ... + \dfrac{{n\left( {n + 1} \right)}}{2}  \) \(= \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\)

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Kiểm tra với \(n = 1\) ta có \({B_1} = \dfrac{{1.\left( {1 + 1} \right)}}{2} = 1 = \dfrac{{1\left( {1 + 1} \right)\left( {1 + 2} \right)}}{6}\) nên \(n = 1\) đúng.

Giả sử đã có \({B_k} = \dfrac{{k\left( {k + 1} \right)\left( {k + 2} \right)}}{6}.\)

Ta cần chứng minh \({B_{k + 1}} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{6}\)

Thật vậy,

\({B_{k + 1}} = {B_k} + \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)}}{2}\) \( = \dfrac{{k\left( {k + 1} \right)\left( {k + 2} \right)}}{6} + \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)}}{2}\) \( = \dfrac{{k\left( {k + 1} \right)\left( {k + 2} \right) + 3\left( {k + 1} \right)\left( {k + 2} \right)}}{6}\) \( = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{6}\)

Vậy ta có điều phải chứng minh.

LG c

\({S_n} = \sin x + \sin 2x + \sin 3x + ... + \sin nx  \) \(= \dfrac{{\sin \dfrac{{nx}}{2}.\sin \dfrac{{\left( {n + 1} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}.\)

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Kiểm tra với \(n = 1\) ta có: \({S_1} = \sin x = \dfrac{{\sin \dfrac{x}{2}.\sin x}}{{\sin \dfrac{x}{2}}}\) nên đúng.

Giả sử đã có \({S_k} = \dfrac{{\sin \dfrac{{kx}}{2}.\sin \dfrac{{\left( {k + 1} \right)}}{2}x}}{{\sin \dfrac{x}{2}}}.\)

Ta cần chứng minh \({S_{k + 1}} = \dfrac{{\sin \dfrac{{\left( {k + 1} \right)x}}{2}.\sin \dfrac{{\left( {k + 2} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\)

Thật vậy,

\({S_{k + 1}} = {S_k} + \sin \left( {k + 1} \right)x\) \( = \dfrac{{\sin \dfrac{{kx}}{2}.\sin \dfrac{{\left( {k + 1} \right)}}{2}x}}{{\sin \dfrac{x}{2}}} + \sin \left( {k + 1} \right)x\) \( = \dfrac{{ - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 1} \right)x}}{2} - \cos \dfrac{x}{2}} \right) - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 3} \right)x}}{2} - \cos \dfrac{{\left( {2k + 1} \right)x}}{2}} \right)}}{{\sin \dfrac{x}{2}}}\)

\( = \dfrac{{ - \dfrac{1}{2}\left( {\cos \dfrac{{\left( {2k + 3} \right)x}}{2} - \cos \dfrac{x}{2}} \right)}}{{\sin \dfrac{x}{2}}}\) \( = \dfrac{{\sin \dfrac{{\left( {k + 2} \right)x}}{2}\sin \dfrac{{\left( {k + 1} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\)

Vậy \({S_{k + 1}} = \dfrac{{\sin \dfrac{{\left( {k + 1} \right)x}}{2}.\sin \dfrac{{\left( {k + 2} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}\left( {dpcm} \right).\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.