Giải bài 2.4 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức>
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đề bài
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
a) \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\)
b) \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\)
d) \(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định số lượng các ẩn của từng bất phương trình, nếu số ẩn vượt quá 2 ẩn thì đó không là hệ bất phương trình bậc nhất hai ẩn.
Bước 2: Nếu bất phương trình có số mũ ở một ẩn lớn hơn 1 thì hệ đó không là hệ bất phương trình bậc nhất hai ẩn.
Lời giải chi tiết
a) Hệ \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\) gồm hai bất phương trình bậc nhất hai ẩn là \(x < 0\) và \(y \ge 0\)
=> Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Hệ \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + {y^2} < 0\) không là bất phương trình bậc nhất hai ẩn (chứa \({y^2}\))
c) Hệ \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + y + z < 0\) có 3 ẩn không là bất phương trình bậc nhất hai ẩn.
d) Ta có:
\(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x + y < 9\\16x + 3y < 1\end{array} \right.\)
Đây là hệ bất phương trình bậc nhất hai ẩn và gồm hai bất phương trình bậc nhất hai ẩn là \( - 2x + y < 9\) và \(16x + 3y < 1\)
- Giải bài 2.5 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 2.6 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải mục 3 trang 28, 29, 30 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 2 trang 28, 29 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 1 trang 26, 27 SGK Toán 10 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức