Bài 9 trang 190 SGK Đại số và Giải tích 12 Nâng cao>
Xác định tập hợp câc điểm reong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Xác định tập hợp câc điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:
LG a
\(\left| {z - i} \right| = 1\)
Phương pháp giải:
Điểm M(x;y) biểu diễn số phức z=x+yi.
Lời giải chi tiết:
Giả sử z=x+yi, \(x,y\in R\)
Khi đó \(z - i = x + \left( {y - 1} \right)i\)
\(\left| {z - i} \right| = 1\)\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 1\).
Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm \(I\left( {0,1} \right)\) bán kính \(1\).
LG b
\(\left| {{{z - i} \over {z + i}}} \right| = 1\)
Phương pháp giải:
Sử dụng công thức \(\left| {\dfrac{z}{{z'}}} \right| = \frac{{\left| z \right|}}{{\left| {z'} \right|}}\)
Lời giải chi tiết:
Giả sử z=x+yi, \(x,y\in R\).
Ta có:\(\left| {{{z - i} \over {z + i}}} \right| = 1 \) \( \Leftrightarrow \frac{{\left| {z - i} \right|}}{{\left| {z + i} \right|}} = 1\) \(\Leftrightarrow \left| {z - i} \right| = \left| {z + i} \right| \) \(\Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {x + \left( {y + 1} \right)i} \right|\)
\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {x^2} + {\left( {y + 1} \right)^2}\) \(\Leftrightarrow {x^2} + {y^2} - 2y + 1 \) \(= {x^2} + {y^2} + 2y + 1\)
\( \Leftrightarrow y = 0 \)
\(\Leftrightarrow \) z là số thực.
Tập hợp M là trục thực \(Ox\).
LG c
\(\left| z \right| = \left| {\overline z - 3 + 4i} \right|\)
Phương pháp giải:
Giả sử z=x+yi, \(x,y\in R\), thay vào điều kiện bài cho tìm mối quan hệ x,y.
Lời giải chi tiết:
Giả sử z=x+yi, \(x,y\in R\).
\(\left| z \right| = \left| {\overline z - 3 + 4i} \right| \) \(\Leftrightarrow \left| {x + yi} \right| = \left| {x - yi - 3 + 4i} \right|\)
\( \Leftrightarrow \left| {x + yi} \right| = \left| {\left( {x - 3} \right) + \left( {4 - y} \right)i} \right| \) \( \Leftrightarrow {x^2} + {y^2}\) \( = {\left( {x - 3} \right)^2} + {\left( {4 - y} \right)^2}\)
\( \Leftrightarrow 6x + 8y = 25\)
Tập hợp M là đường thẳng có phương trình: \(6x + 8y = 25\)
Loigiaihay.com


- Bài 10 trang 190 SGK Đại số và Giải tích 12 Nâng cao
- Bài 11 trang 191 SGK Đại số và Giải tích 12 Nâng cao
- Bài 12 trang 191 SGK Đại số và Giải tích 12 Nâng cao
- Bài 13 trang 191 SGK Đại số và Giải tích 12 Nâng cao
- Bài 14 trang 191 SGK Đại số và Giải tích 12 Nâng cao
>> Xem thêm