Bài 4.10 trang 100 SGK Toán 11 tập 1 - Cùng khám phá>
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.
Đề bài
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.
a) Tìm giao điểm A' của đường thẳng AG và mặt phẳng (BCD).
b) Qua M, kẻ đường thẳng Mx song song với AA' và Mx cắt (BCD) tại M'. Chứng minh B, M', A' thẳng hằng và BM'=M'A'=A'N.
Phương pháp giải - Xem chi tiết
a) Cách tìm giao điểm của một đường thẳng a với một mặt phẳng (P):
+ Bước 1: Tìm \(\left( Q \right) \supset a\). Tìm \(d = \left( P \right) \cap \left( Q \right)\)
+ Bước 2: Tìm \(I = a \cap d\). I chính là giao điểm của a và (P).
b) Chứng minh 3 điểm cùng thuộc 2 mặt phẳng phân biệt thì 3 điểm đó thẳng hàng.
Lời giải chi tiết
a)
\(\left\{ \begin{array}{l}G \in MN\\MN \subset \left( {ABN} \right)\end{array} \right. \Rightarrow G \in \left( {ABN} \right)\)
\( \Rightarrow AG \subset \left( {ABN} \right)\)
Ta có: \(\left( {ABN} \right) \cap \left( {BCD} \right) = BN\)
Trong (ABN), gọi \(AG \cap BN = A'\) \( \Rightarrow A' = AG \cap \left( {BCD} \right)\)
b)
\(\left\{ \begin{array}{l}Mx//AA'\\AA' \subset \left( {ABN} \right)\\M \in \left( {ABN} \right)\end{array} \right. \Rightarrow Mx \subset \left( {ABN} \right)\)
Mà \(M' = Mx \cap \left( {BCD} \right)\)
Suy ra \({{\rm{M}}^{\rm{'}}}\) nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.
Vậy B, M’, A’ thẳng hàng.
Xét tam giác \(ABA'\) có: \(\left\{ \begin{array}{l}MM'//AA'\\MA = MB\end{array} \right. \Rightarrow M'A' = M'B\)
Xét tam giác \(NMM'\) có: \(\left\{ \begin{array}{l}GA//MM'\\MG = GN\end{array} \right. \Rightarrow M'A' = A'N\)
\( \Rightarrow BM' = M'A' = A'N\).
- Bài 4.11 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 4.9 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 4.8 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 4.7 trang 100 SGK Toán 11 tập 1 - Cùng khám phá
- Giải mục 2 trang 96, 97, 98, 99 SGK Toán 11 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá