Bài 2.20 trang 56 SGK Toán 11 tập 1 - Cùng khám phá


Trong một nhà hàng, một bàn vuông ngồi được 4 người, nếu nối hai bàn vuông lại thì ngồi được 6 người, nối ba bàn ngồi được 8 người, ... Nếu nối n bàn vuông lại theo một hàng ngang thì ngồi được bao nhiêu người?

Đề bài

Trong một nhà hàng, một bàn vuông ngồi được 4 người, nếu nối hai bàn vuông lại thì ngồi được 6 người, nối ba bàn ngồi được 8 người, ... Nếu nối n bàn vuông lại theo một hàng ngang thì ngồi được bao nhiêu người?

Phương pháp giải - Xem chi tiết

Mỗi khi nối thêm 1 bàn thì có thể ngồi thêm 2 người. Từ đó lập cấp số cộng.

Áp dụng công thức \({u_{n + 1}} = {u_1}.{q^n}\) để tính số người khi nối n bàn với nhau.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi số người khi ngồi một bàn, khi nối hai bàn, khi nối ba bàn lần lượt là \({u_1},{u_2},{u_3}\).

\( \Rightarrow {u_1} = 4,{u_2} = 6,{u_3} = 8\)

\( \Rightarrow d = {u_2} - {u_1} = 2\)

Ta lập được cấp số cộng với \({u_1} = 4,d = 8\).

Vậy khi nối n bàn lại với nhau thì ngồi được \({u_n} = {u_1} + \left( {n - 1} \right)d = 4 + \left( {n - 1} \right).2 = 2n + 2\) (người).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.