Bài 1.8 trang 15 SGK Toán 11 tập 1 - Cùng khám phá


Giả sử \(\sin \alpha = t\), với \(\frac{\pi }{2} < \alpha < \pi \). Tính các giá trị sau theo t:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Giả sử \(\sin \alpha  = t\), với \(\frac{\pi }{2} < \alpha  < \pi \). Tính các giá trị sau theo t:

a) \(\sin \left( {\alpha  + \pi } \right)\);

b) \(\sin \left( {\alpha  - \pi } \right)\);

c) \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\);

d) \(\tan \left( {3\pi  + \alpha } \right)\).

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức của hai góc lượng giác có liên quan đặc biệt và hệ thức cơ bản giữa các giá trị lượng giác.

Lời giải chi tiết

a) \(\sin \left( {\alpha  + \pi } \right) =  - \sin \alpha  =  - t\)

b) \(\sin \left( {\alpha  - \pi } \right) =  - \sin \alpha  =  - t\)

c) \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \)

\({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {t^2}\)

Vì \(\frac{\pi }{2} < \alpha  < \pi \) nên điểm biểu diễn của góc \(\alpha \) thuộc phần tư II nên \(\cos \alpha  < 0\)

\( \Rightarrow \cos \alpha  =  - \sqrt {1 - {t^2}} \)\( \Rightarrow \sin \left( {\frac{\pi }{2} - \alpha } \right) =  - \sqrt {1 - {t^2}} \)

d) \(\tan \left( {3\pi  + \alpha } \right) = \tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{t}{{ - \sqrt {1 - {t^2}} }}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí