Bài 16 trang 89 SGK Hình học 12 Nâng cao


Xét vị trí tương đối của mỗi cặp mật phẳng cho bởi các phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Xét vị trí tương đối của mỗi cặp mặt phẳng cho bởi các phương trình sau:

LG a

\(x + 2y - z + 5 = 0\) và \(2x + 3y - 7z - 4 = 0\).

Phương pháp giải:

Xét các bộ hệ số của x,y,z có tương tứng tỉ lệ hay không và kết luận.

Lời giải chi tiết:

Ta có \(\frac{1}{2} \ne \frac{2}{3} \ne \frac{{ - 1}}{{ - 7}}\) nên hai mặt phẳng đã cho cắt nhau.

LG b

\(x - 2y + z - 3 = 0\) và \(2x - y + 4z - 2 = 0\).

Lời giải chi tiết:

\(\frac{1}{2} \ne \frac{{ - 2}}{-1} \ne \frac{1}{4}\) nên hai mặt phẳng cắt nhau.

LG c

\(x + y + z - 1 = 0\) và \(2x + 2y + 2z + 3 = 0\).

Lời giải chi tiết:

\({1 \over 2} = {1 \over 2} = {1 \over 2} \ne {{ - 1} \over 3}\) nên hai mặt phẳng song song.

LG d

\(3x - 2y + 3z + 5 = 0\) và \(9x - 6y - 9z - 5 = 0\).

Lời giải chi tiết:

\(\frac{3}{9} = \frac{{ - 2}}{{ - 6}} \ne \frac{3}{{ - 9}}\) nên hai mặt phẳng cắt nhau.

LG e

\(x - y + 2z - 4 = 0\) và \(10x - 10y + 20z - 40 = 0\).

Lời giải chi tiết:

\({1 \over {10}} = {{ - 1} \over { - 10}} = {2 \over {20}} = {{ - 4} \over { - 40}}\) nên hai mặt phẳng trùng nhau.

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu
  • Bài 17 trang 89 SGK Hình học 12 Nâng cao

    Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây song song:

  • Bài 18 trang 90 SGK Hình học 12 Nâng cao

    Cho hai mặt phẳng có phương trình là và Với giá trị nào của m thì: a) Hai mặt phẳng đó song song ; b) Hai mặt phẳng đó trùng nhau ; c) Hai mặt phẳng đó cắt nhau ; d) Hai mặt phẳng đó vuông góc?

  • Bài 19 trang 90 SGK Hình học 12 Nâng cao

    Tìm tập hợp các điểm cách đều hai mặt phẳng trong mỗi trường hợp sau:

  • Bài 20 trang 90 SGK Hình học 12 Nâng cao

    Tìm khoảng cách giữa hai mặt phẳng

  • Bài 21 trang 90 SGK Hình học 12 Nâng cao

    Tìm điểm M trên trục Oz trong mỗi trường hợp sau : a) M cách đều điểm A(2 ; 3 ; 4) và mặt phẳng ; b) M cách đều hai mặt phẳng

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí