Đề bài

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì

  • A.

    ${x_0}$ là điểm cực đại của hàm số.

  • B.

    ${x_0}$ là điểm cực tiểu của hàm số.

  • C.

    ${x_0}$ là điểm cực đại của đồ thị hàm số.

  • D.

    ${x_0}$ là điểm cực tiểu của đồ thị hàm số.

Phương pháp giải

Nếu $\left\{ \begin{gathered}f'\left( x \right) < 0,\forall x \in \left( {{x_0} - h} \right) \hfill \\f'\left( x \right) > 0,\forall x \in \left( {{x_0} + h} \right) \hfill \\ \end{gathered}  \right.$  thì ${x_0}$ là một điểm cực tiểu của hàm số.

Lời giải của GV Loigiaihay.com

Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thì ${x_0}$ là điểm cực tiểu của hàm số.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Giải thích vì sao nếu f’(x) không đổi dấu qua \({x_0}\) thì \({x_0}\) không phải là điểm cực trị của hàm số f(x)?

Xem lời giải >>
Bài 2 :

Hình 1.9 là đồ thị của hàm số \(y = f\left( x \right)\). Hãy tìm các cực trị của hàm số.

Xem lời giải >>
Bài 3 :

Cho hàm số \(y = f\left( x \right) = \left| x \right|\).
a) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\). Từ đó suy ra hàm số không có đạo hàm tại \(x = 0\).
b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại \(x = 0\). (Xem Hình 1.4)

Xem lời giải >>
Bài 4 :

Quan sát bảng biến thiên dưới đây và cho biết:

a) \({x_o}\) có là điểm cực đại của hàm số \(f\left( x \right)\) hay không.

b) \({x_1}\) có là điểm cực tiểu của hàm số \(h\left( x \right)\) hay không.

Xem lời giải >>
Bài 5 :

Dựa vào đồ thị hàm số \(y = f\left( x \right) =  - {x^3} - 3{x^2} + 3\) ở Hình 3, hãy so sánh:

a) \(f\left( { - 2} \right)\) với mỗi giá trị \(f\left( x \right)\), ở đó \(x \in \left( { - 3; - 1} \right)\) và \(x \ne  - 2\).

b) \(f\left( 0 \right)\)với mỗi giá trị \(f\left( x \right)\), ở đó \(x \in \left( { - 1;1} \right)\) và \(x \ne 0\).

Xem lời giải >>
Bài 6 :

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau:


Giá trị cực tiểu của hàm số đã cho bằng:
a) \(2\).
b) \(3\).
c) \( - 4\).
d) \(0\).

Xem lời giải >>
Bài 7 :

Đồ thị của hàm số \(y = \left\{ \begin{array}{l}{x^2}{\rm{       }}khi{\rm{ }}x \le 1{\rm{ }}\\2 - x{\rm{   }}khi{\rm{ }}x > 1\end{array} \right.\) được cho ở Hình 9.

a) Tìm điểm cực đại và điểm cực tiểu của hàm số.

b) Tại x = 1, hàm số có đạo hàm không?

c) Thay mỗi dấu ? bằng kí hiệu (+, –) thích hợp để hoàn thành bảng biến thiên dưới đây. Nhận xét về dấu của y' khi x đi qua điểm cực đại và điểm cực tiểu.

Xem lời giải >>
Bài 8 :

Tìm các điểm cực trị của hàm số y = f(x) có đồ thị cho ở Hình 8

Xem lời giải >>
Bài 9 :

Quan sát đồ thị của hàm số \(y = f\left( x \right) = {x^3}--3{x^2} + 1{\rm{ }}\) trong Hình 5.

a) Tìm khoảng (a; b) chứa điểm x = 0 mà trên đó f(x) < f(0) với mọi \(x \ne 0\).

b) Tìm khoảng (a; b) chứa điểm x = 2 mà trên đó f(x) > f(2) với mọi \(x \ne 2\).

c) Tồn tại hay không khoảng (a; b) chứa điểm x = 1 mà trên đó f(x) > f(1) với mọi \(x \ne 1\) hoặc f(x) < f(1) với mọi \(x \ne 1\)?

Xem lời giải >>
Bài 10 :

Cho hàm số y = f(x) có đồ thị như Hình 1. Hàm số đạt cực đại tại

A. x = 0.      B. x = 3.      C. x = 4.      D. x = 5.

 
Xem lời giải >>
Bài 11 :

Hàm số \(y = f(x) =  - \frac{1}{8}{x^3} + \frac{3}{2}x + 2\) có đồ thị cho ở hình 1.3

a) Giải phương  trình \(f'(x) = 0\)

b) Dựa vào đồ thị, só sánh \(f( - 2)\) với các giá trị khi \(x \in ( - 3; - 1)\)

c) Dựa vào đồ thị, só sánh \(f(2)\) với các giá trị khi  \(x \in \left( {\frac{3}{2};\frac{5}{2}} \right)\)

Xem lời giải >>
Bài 12 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là:

A. 0.

B. 1.

C. 2.

D. 3.

Xem lời giải >>
Bài 13 :

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Điểm cực đại của hàm số đã cho là:

A. ‒1.

B. 3.

C. 2.

D. 0.

Xem lời giải >>
Bài 14 :

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Mệnh đề nào dưới đây đúng?

A. Hàm số đạt cực tiểu tại \(x =  - 5\).

B. Hàm số có giá trị cực đại bằng 0.

C. Hàm số đạt cực tiểu tại \(x = 2\).

D. Hàm số đạt cực đại tại \(x = 4\).

Xem lời giải >>
Bài 15 :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 5. Số điểm cực trị của hàm số đã cho là:

A. 2.                           

B. 4.

C. 1.

D. 3.

Xem lời giải >>
Bài 16 :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 6. Giá trị cực tiểu của hàm số đã cho là:

A. 2.

B. 1.

C. ‒1.

D. 0.

Xem lời giải >>
Bài 17 :

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Số điểm cực trị của hàm số là:

A. 0.                                  

B. 1.                                  

C. 2.                                  

D. 3.

Xem lời giải >>
Bài 18 :

Hàm số \(y = f\left( x \right)\) trong Hình 1 có bao nhiêu điểm cực trị?

A. 2.

B. 3.

C. 4.

D. 5.

Xem lời giải >>
Bài 19 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\). Nếu \(f'\left( x \right)\) đổi dấu từ dương sang âm qua điểm \({x_0}\) thì:

Xem lời giải >>
Bài 20 :

Cho hàm số f(x) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 2)^3}\), \(\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số là

Xem lời giải >>
Bài 21 :

Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số đạt cực đại tại

Xem lời giải >>
Bài 22 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

Điểm cực đại của hàm số đã cho là

Xem lời giải >>
Bài 23 :

Cho hàm số f(x) có đồ thị y = f’(x) như hình.

Hàm số f(x) có cực tiểu là

Xem lời giải >>
Bài 24 :

Cho hàm số y = f(x) có đồ thị như hình vẽ.

Điểm cực đại của hàm số đã cho là

Xem lời giải >>
Bài 25 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

Điểm cực đại của hàm số đã cho là

Xem lời giải >>
Bài 26 :

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có bảng xét dấu f’(x) như sau:

Số điểm cực đại của hàm số đã cho là

Xem lời giải >>