Phân thức \(\frac{{x + 1}}{{2x - y}}\) là phân thức nghịch đảo của:
- 
                        A.
                        \(\frac{{x + 1}}{{2x}}\). 
- 
                        B.
                        \(\frac{{x - 1}}{{2x - 1}}\). 
- 
                        C.
                        \(\frac{{2x - y}}{{x + 1}}\). 
- 
                        D.
                        \(\frac{{2y - x}}{{x + 1}}\). 
Hai phân thức nghịch đảo nếu tích của chúng bằng 1.
Vì \(\frac{{x + 1}}{{2x - y}}.\frac{{2x - y}}{{x + 1}} = 1\) nên phân thức nghịch đảo của phân thức \(\frac{{x + 1}}{{2x - y}}\) là \(\frac{{2x - y}}{{x + 1}}\).
Đáp án C
Đáp án : C

Các bài tập cùng chuyên đề
Tính tích của hai phân thức \(\frac{{{x^2}}}{{x - 1}}\) và \(\frac{{x - 1}}{{{x^2}}}\).
Tìm phân thức nghịch đảo của mỗi phân thức sau: \(\frac{{{x^2} - x + 1}}{{4x - 5}};\frac{1}{{x - y}};\frac{{ - 3a}}{{{b^2}}};7m - 3\)
Cho hai phân thức \(\frac{{3{x^3}}}{{4{y^2}}}\) và \(\frac{{6{x^2}}}{{8y}}\).
a) Tìm phân thức nghịch đảo của phân thức \(\frac{{6{x^2}}}{{8y}}\).
b) Nhân phân thức \(\frac{{3{x^3}}}{{4{y^2}}}\) với phân thức tìm được ở câu a.
Cho hai phân thức \(\frac{{3{x^3}}}{{4{y^2}}}\) và \(\frac{{6{x^2}}}{{8y}}\).
a) Tìm phân thức nghịch đảo của phân thức \(\frac{{6{x^2}}}{{8y}}\).
b) Nhân phân thức \(\frac{{3{x^3}}}{{4{y^2}}}\) với phân thức tìm được ở câu a.
Phân thức nghịch đảo của phân thức \( - \frac{{3{y^2}}}{{2x}}\) là:
- 
                         A.
                        \( \frac{{3{y^2}}}{{2x}}\) 
- 
                         B.
                        \( - \frac{{2{x^2}}}{{3y}}\) 
- 
                         C.
                        \( - \frac{{2x}}{{3{y^2}}}\) 
- 
                         D.
                        \( \frac{{2x}}{{3{y^2}}}\) 
 
                


 
             
            