Cho phương trình \({x^2} + 4x + m = 0\).
a) Giải phương trình với \(m = 1\).
b) Tìm m để phương trình có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
a) Thay \(m = 1\) vào phương trình đầu bài cho, ta thu được phương trình bậc nhất hai ẩn. Giải phương trình bằng cách sử dụng công thức nghiệm thu gọn.
b) + Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\).
+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.
a) Với \(m = 1\) ta có: \({x^2} + 4x + 1 = 0\).
Vì \(\Delta ' = {2^2} - 1 = 3\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 2 - \sqrt 3 \); \({x_2} = - 2 + \sqrt 3 \).
b) \({x^2} + 4x + m = 0\) (*)
Phương trình (*) có hai nghiệm khi \(\Delta ' \ge 0\), tức là \(4 - m \ge 0\), suy ra \(m \le 4\) (1).
Theo định lí Viète ta có: \({x_1} + {x_2} = - 4;{x_1}.{x_2} = m\).
Ta có:
\(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} \\= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)
Do đó, \({\left( { - 4} \right)^2} - 2.m = 10\), suy ra \(m = 3\) (thỏa mãn (1)).
Vậy \(m = 3\) thì thỏa mãn yêu cầu bài toán.
Các bài tập cùng chuyên đề
Tìm \(b,\,\,c\) để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là \({x_1} = - 2;\,\,{x_2} = 3.\)
-
A.
\(b = 1\,\,;\,\,c = - 6\)
-
B.
\(b = - 1\,\,;\,\,c = 6\)
-
C.
\(b = 1\,\,;\,\,c = 6\)
-
D.
\(b = - 1\,\,;\,\,c = - 6\)
Giải các phương trình:
a) \({x^2} - 12x = 0\)
b) \(13{x^2} + 25x - 38 = 0\)
c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)
d) \(x(x + 3) = 27 - (11 - 3x)\)
Cho phương trình \(2{x^2} - 3x - 6 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\). Chứng minh cả 2 nghiệm \({x_1},{x_2}\) đều khác 0.
c) Tính \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}}\)
d) Tính \({x_1}^2 + {x_2}^2\)
e) Tính \(\left| {{x_1} - {x_2}} \right|.\)
Bác Đạt muốn thiết kế cửa sổ có dạng hình chữ nhật với diện tích bằng 2,52 m2 và chu vi bằng 6,4m. Tìm kích thước của cửa sổ đó.
Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + 6m - 4 = 0{\rm{ (1)}}\) (với m là tham số)
a) Với \(m = 0\) thì phương trình (1) có hai nghiệm phân biệt.
b) Với \(m = 2\) thì phương trình (1) có hai nghiệm \({x_1};{\rm{ }}{x_2}\) thoả mãn \({x_1}{\rm{ + }}{x_2} = 6;{\rm{ }}{x_1}{x_2} = 8\) .
c) Phương trình (1) luôn có hai nghiệm phân biệt với mọi m.
d) Để phương trình (1) có hai nghiệm \({x_1};{\rm{ }}{x_2}\) thỏa mãn \(\left( {2m - 2} \right){x_1} + {x_2}^2 - 4{x_2} = 4{\rm{ (2)}}\) thì \(m \in \left\{ { - 2;{\rm{ }}\frac{1}{2}} \right\}\).
Cho phương trình \({x^2} + 2\left( {m - 2} \right)x + {m^2} - 4m = 0{\rm{ }}(1)\) (với \(m\)là tham số)
a) Khi \(m = 1\) thì phương trình có 2 nghiệm \({x_1} = - 1;{\rm{ }}{x_2} = 3\)
b) Phương trình (1) có 2 nghiệm \({x_1};{\rm{ }}{x_2}\) thoả mãn \({x_1}{\rm{ + }}{x_2} = 2\left( {m - 2} \right);{\rm{ }}{x_1}{x_2} = {m^2} - 4m\)
c) Giá trị của của biểu thức \({{\rm{x}}_1}^2 + {{\rm{x}}_2}^2 = 2{m^2} - 8m + 16\).
d) Phương trình \(\left( 1 \right)\)có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện \(\frac{3}{{{x_1}}} + {x_2} = \frac{3}{{{x_2}}} + {x_1}\) khi \(m = 3\)
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {3 - 2m} \right)x - {m^2}\) (\(m\) là tham số).
a) Hoành độ giao điểm của đường thẳng \((d)\) và parabol \((P)\) là nghiệm của phương trình \({x^2} - (3 - 2m)x + {m^2} = 0\,\,(1)\).
b) Khi \(m = 0\) phương trình (1) có hai nghiệm là \({x_1} = 0;{\rm{ }}{x_2} = - 3\).
c) Khi \(m = 0\) đường thẳng \((d)\) và parabol \((P)\) cắt nhau tại hai điểm phân biệt có toạ độ là \(\left( {0;0} \right);\,\,\left( {3;9} \right)\).
d) Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thỏa mãn \(x_1^2 + \left( {3 - 2m} \right){x_2} - 24 = 0\) thì \(m \in \left\{ { - 1;5} \right\}\).
Cho phương trình \(2{x^2} + 2\left( {m + 1} \right)x - 3 = 0\)
a) Chứng minh phương trình đó luôn có nghiệm với mọi m.
b) Gọi \({x_1},{x_2}\) là 2 nghiệm của phương trình đó. Tìm giá trị nhỏ nhất của biểu thức \(A = {x_1}^2 + {x_2}^2 + 3{x_1}{x_2}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = {x_1}({x_1} + 2024) + {x_2}\left( {{x_2} + 2025} \right) - {x_2}\)
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = \frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} + \frac{5}{2}\).
a) Không giải phương trình, chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tính giá trị biểu thức \(A = {x_1}\left( {4 + \frac{1}{3}{x_2}} \right) + 4{x_2}\).
a) Không giải phương trình, chứng minh phương trình luôn có hai nghiệm phân biệt.
b) Tính giá trị biểu thức \(A = \frac{{{x_1}}}{{{x_2} - 2}} + \frac{{{x_2}}}{{{x_1} - 2}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt \({x_1},{x_2}\).
b) Không giải phương trình, hãy tính giá trị của biểu thức \(A = \frac{{{x_1}{x_2}}}{{4 - {x_1}}} + \frac{{{x_1}{x_2}}}{{4 - {x_2}}}\).
a) Tìm \(a\) để đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(M\left( {\sqrt 2 \,;{\rm{ }}2} \right).\)
b) Cho phương trình \({x^2} - 7x + 12 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(M = \left( {1 - 25{x_1}} \right){x_1} - {x_2}\left( {25{x_2} - {x_1} - 1} \right)\).
a) Chứng tỏ phương trình có 2 nghiệm phân biệt.
b) Hãy tính giá trị của biểu thức \(A = x_1^2 - \frac{4}{3}{x_1} - x_2^2 + \frac{4}{3}{x_2} + {\left( {3{x_1}.{x_2}} \right)^2}\).
a) Tìm các điểm M thuộc (P): \(y = \frac{{ - 1}}{4}{x^2}\) có tung độ gấp 2 lần hoành độ và khác 0.
b) Cho phương trình \({x^2} - x - 10 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính \(x_1^3 + x_2^3\).
a) Tìm bằng phép tính tọa độ các điểm M thuộc (P): \(y = \frac{1}{2}{x^2}\) có tung độ là 8.
b) Cho phương trình \({x^2} - 2x - 8 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\)
a) Chứng minh phương trình có 2 nghiệm phân biệt.
b) Hãy tính giá trị của biểu thức \(P = {x_1}\left( {{x_1} - 12} \right) + {x_2}\left( {{x_2} - 12} \right)\).
a) Biết đồ thị của hàm số \(y = \left( {1 + 3a} \right){x^2}\) đi qua điểm \(M\left( { - 2;28} \right)\). Tìm a.
b) Cho phương trình \({x^2} + 2x - 2 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị biểu thức \(A = {x_1}\left( {x_2^2 - 2} \right) - {x_1} - {x_2}\).
a) Tìm các điểm thuộc \(\left( P \right):y = - \frac{1}{4}{x^2}\) có hoành độ và tung độ là hai số đối nhau và khác (0;0)
b) Cho phương trình \(3{x^2} + 2x - 3 = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\). Không giải phương trình, hãy tính giá trị biểu thức \(M = \left( {{x_1} - 2{x_2}} \right)\left( {{x_2} - {x_1}} \right) + x_2^2\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt \({x_1},{x_2}\).
b) Không giải phương trình, hãy tính giá trị của biểu thức \(\frac{{{x_1}{x_2}}}{{4 - {x_1}}} + \frac{{{x_1}{x_2}}}{{4 - {x_2}}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(C = 2\sqrt 3 {x_1} - x_1^2 - x_2^2 - \sqrt 3 ({x_1} - {x_2})\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(A = \frac{{5{x_1} - {x_2}}}{{{x_1}}} - \frac{{{x_1} - 3{x_2}}}{{{x_2}}}\).
a) Chứng minh phương trình trên có hai nghiệm phân biệt.
b) Không giải phương trình, tính giá trị của biểu thức: \(A = {x_1}\left( {3{x_1} - {x_2}} \right) + {x_2}\left( {3{x_2} - {x_1}} \right)\).
Phương trình \({x^2} - 2x - m + 1 = 0\) (m là tham số) có một nghiệm là \(x = 1 + \sqrt 7 \). Tính giá trị của biểu thức \(A = {x_1}^2{x_2} + {x_2}^2{x_1}\).
Tìm m để phương trình \({x^2} + mx - 2 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) cùng nhỏ hơn 1.