Đề bài

Cho tam giác ABC, đường phân giác AD (D \( \in \) BC). Biết AB = 2cm, AC = 3cm, BD = 1,6cm. Khi đó độ dài CD bằng

  • A.

    2,8cm.

  • B.

    1,8cm.

  • C.

    2,2cm.

  • D.

    2,4cm.

Phương pháp giải

Sử dụng tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Lời giải của GV Loigiaihay.com

Ta có AD là tia phân giác của góc A nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) hay \(\frac{{1,6}}{{CD}} = \frac{2}{3}\).

Suy ra \(CD = 1,6:\frac{2}{3} = 1,6.\frac{3}{2} = 2,4\left( {cm} \right)\)

Đáp án D

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.

Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)

Xem lời giải >>
Bài 2 :

Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D

Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\)

Xem lời giải >>
Bài 3 :

Tính độ dài x trên Hình 4.23

Xem lời giải >>
Bài 4 :

Trong H.4.19, AD là đường phân giác của tam giác ABC. Hai tỉ số \(\dfrac{{DB}}{{DC}}\) và \(\dfrac{{AB}}{{AC}}\) có bằng nhau không?

Xem lời giải >>
Bài 5 :

Tính độ dài x trên Hình 4.24.

Xem lời giải >>
Bài 6 :

Cho tam giác ABC. Đường phân giác trong của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).

Xem lời giải >>
Bài 7 :

Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là

A. 3 cm.

B. 6 cm.

C. 9 cm.

D. 12 cm.

Xem lời giải >>
Bài 8 :

Tính độ dài x trong Hình 5.12

 

Xem lời giải >>
Bài 9 :

Cho tam giác ABC, trung tuyến AI. Tia phân giác của góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN//BC.

Xem lời giải >>
Bài 10 :

Cho \(\Delta ABC\) có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C \(\left( {D \in BC,E \in AC,F \in AB} \right)\). Chứng minh rằng \(\frac{{AE}}{{EC}}.\frac{{CD}}{{DB}}.\frac{{BF}}{{FA}} = 1\).

Xem lời giải >>
Bài 11 :

Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\). Chứng minh rằng \(AB.EC = AC.EA\)

Xem lời giải >>
Bài 12 :

Cho \(\Delta ABC\). Tia phân giác góc trong của góc A cắt BC tại D. Cho \(AB = 6,AC = x,BD = 9,BC = 21\). Độ dài x bằng

A. 4

B. 6

C. 12

D. 14

Xem lời giải >>
Bài 13 :

Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết \(AB = 3cm,BD = 4cm,CD = 6cm\). Độ dài AC bằng

A. 4cm

B. 5cm

C. 6cm

D. 4,5cm

Xem lời giải >>
Bài 14 :

Cho hình thoi ABCD có M là trung điểm của AD, đường chéo AC cắt BM tại điểm E (H.5.16)

Tỉ số \(\frac{{EM}}{{EB}}\) bằng  

A. \(\frac{1}{3}\)

B. 2

C. \(\frac{1}{2}\)

D. \(\frac{2}{3}\)

Xem lời giải >>
Bài 15 :

Cho tam giác ABC cân tại A, các đường phân giác BD, CE \(\left( {D \in AC,E \in AB} \right)\). Chứng minh DE//BC

Xem lời giải >>
Bài 16 :

Quan sát Hình 4.17 và chọn khẳng định đúng.

 

A. \(\frac{{IA}}{{IC}} = \frac{{BA}}{{AC}}.\)

B. \(\frac{{IA}}{{IC}} = \frac{{BC}}{{BA}}.\)

C. \(\frac{{IA}}{{IC}} = \frac{{BA}}{{BC}}.\)

D. \(\frac{{IA}}{{IC}} = \frac{{AC}}{{AB}}.\)

Xem lời giải >>
Bài 17 :

Quan sát Hình 4.18, biết BI là phân giác của góc B, AB = 12 cm, BC = 15 cm, AC = 9 cm. Độ dài đoạn IA là:

 

A. 5 cm.

B. 4 cm.

C. 6 cm.

D. 3 cm.

Xem lời giải >>
Bài 18 :

Quan sát Hình 4.19. Tỉ số \(\frac{x}{y}\) bằng

 

A. \(\frac{1}{7}\).

B. \(\frac{{15}}{7}\)

C. \(\frac{7}{{15}}\)

D. \(\frac{2}{{15}}\)

Xem lời giải >>
Bài 19 :

Quan sát Hình 4.20. Độ dài x, y lần lượt là:

 

A. x = 16 cm; y = 12 cm.

B. x = 14 cm; y = 14 cm.

C. x = 14,3 cm; y = 10,7 cm.

D. x = 12 cm; y = 16 cm.

Xem lời giải >>
Bài 20 :

Tìm độ dài x trong Hình 4.21.

 

Xem lời giải >>
Bài 21 :

Cho tam giác ABC. Đường phân giác của góc A cắt BC tại D. Tính độ dài đoạn thẳng DC biết AB = 4,5 m; AC = 7,0 m và CB = 3,5 m (làm tròn kết quả đến hàng phần chục).

Xem lời giải >>
Bài 22 :

Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh rằng \(\frac{{AC}}{{AB}} = \frac{{EC}}{{EA}}.\)

Xem lời giải >>
Bài 23 :

Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích của hai tam giác ABD và ACD.

Xem lời giải >>
Bài 24 :

Tính độ dài cạnh \(MQ\) của tam giác \(MPQ\) trong Hình 6.

Xem lời giải >>
Bài 25 :

Tính độ dài \(x\) trong Hình 7.

 

Xem lời giải >>
Bài 26 :

Tam giác \(ABC\) có \(AB = 6cm,AC = 8cm,BC = 10cm\). Đường phân giác của góc \(BAC\) cắt cạnh \(BC\) tại \(D\).

a) Tính độ dài các đoạn thẳng \(DB\) và \(DC\).

b) Tính tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\).

Xem lời giải >>
Bài 27 :

Cho tam giác \(MNP\) có \(MD\) là tia phân giác góc \(M\left( {D \in NP} \right)\). Trong các khẳng định sau, khẳng định nào đúng?

A. \(\frac{{DN}}{{MN}} = \frac{{DP}}{{MP}}\).

B. \(\frac{{MN}}{{DN}} = \frac{{DP}}{{MP}}\).

C. \(\frac{{DN}}{{MN}} = \frac{{MP}}{{DP}}\).

D. \(\frac{{MN}}{{MP}} = \frac{{DP}}{{DN}}\).

Xem lời giải >>
Bài 28 :

Cho \(\Delta ABC\) biết \(AM\) là đường phân giác. Trong các khẳng định sau, khẳng định nào đúng?

A. \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}\).

B. \(\frac{{AB}}{{MC}} = \frac{{BM}}{{AC}}\).

C. \(\frac{{AM}}{{MC}} = \frac{{AB}}{{AC}}\).

D. \(\frac{{BM}}{{MC}} = \frac{{AM}}{{AC}}\).

Xem lời giải >>
Bài 29 :

Tính độ dài \(x\) trong Hình 9

 

Xem lời giải >>
Bài 30 :

a) Quan sát Hình 11, chứng minh \(AK\) là đường phân giác của góc \(A\) trong tam giác \(ABC\).

b) Dựa vào kết quả của câu a, hãy nêu cách vẽ đường phân giác của một góc trong tam giác bằng thước kẻ và eke.

Xem lời giải >>