Kết quả của phép nhân \(\left( {x - 2y} \right)\left( {2x + y} \right)\) là
-
A.
\(2{x^2} - 2{y^2}\).
-
B.
\(2{x^2} - 3xy - 2{y^2}\).
-
C.
\(2{x^2} - 3xy + 2{y^2}\).
-
D.
\(2{x^2} - 5xy - 2{y^2}\).
Sử dụng quy tắc nhân đa thức với đa thức: ta nhân lần lượt các hạng tử của đa thức này với các hạng tử của đa thức kia.
Ta có:
\(\begin{array}{c}\left( {x - 2y} \right)\left( {2x + y} \right) = 2{x^2} - 4xy + xy - 2{y^2}\\ = 2{x^2} - 3xy - 2{y^2}\end{array}\)
Đáp án B
Đáp án : B
Các bài tập cùng chuyên đề
Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân:
\(\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\)
Bằng cách tương tự, hãy làm phép nhân \(\left( {2x + 3y} \right).\left( {{x^2} - 5xy + 4{y^2}} \right)\).
Thực hiện phép nhân:
a) \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\);
b) \(\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\).
Xét biểu thức đại số với hai biến k và m sau:
\(P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\)
a) Rút gọn biểu thức P.
b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.
Làm tính nhân:
a) \(\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\)
b) \(\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\)
Chứng minh đẳng thức sau: \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\).
Bà Khanh dự định mua x hộp sữa, mỗi hộp giá y đồng. Nhưng khi đến cửa hàng, bà Khanh thấy giá sữa giảm 1 500 đồng mỗi hộp nên quyết định mua thêm 3 hộp nữa.
Tìm đa thức biểu thị số tiền bà Khanh phải trả cho tổng số hộp sữa đã mua.
Bà Khanh dự định mua x hộp sữa, mỗi hộp giá y đồng. Nhưng khi đến cửa hàng, bà Khanh thấy giá sữa giảm 1 500 đồng mỗi hộp nên quyết định mua thêm 3 hộp nữa.
Tìm đa thức biểu thị số tiền bà Khanh phải trả cho tổng số hộp sữa đã mua.
Thực hiện các phép nhân:
a) \(\left( { - 5{a^4}} \right)\left( {{a^2}b - a{b^2}} \right)\)
b) \(\left( {x + 2y} \right)\left( {x{y^2} - 2{y^3}} \right)\)
Thực hiện các phép nhân:
a) \(\left( {x - y} \right)\left( {x - 5y} \right)\)
b) \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\)
Kết quả của phép nhân \((x + y - 1)(x + y + 1)\) là:
A. \({x^2} - 2xy + {y^2} + 1\)
B. \({x^2} + 2xy + {y^2} - 1\)
C. \({x^2} - 2xy + {y^2} - 1\)
D. \({x^2} + 2xy + {y^2} + 1\)
Kết quả của phép nhân \((2x + 1)(4{x^2} - 2x + 1)\) là:
A. \(8{x^3} - 1\)
B. \(4{x^3} + 1\)
C. \(8{x^3} + 1\)
D. \(2{x^2} + 1\)
Thực hiện các phép tính sau:
a) \({x^2}y\left( {5xy - 2{x^2}y - {y^2}} \right)\)
b) \(\left( {x - 2y} \right)\left( {2{x^2} + 4xy} \right)\)
a) Tính tích: \(\left( {x + 1} \right).\left( {{x^2} - x + 1} \right)\)
b) Nêu quy tắc nhân hai đa thức trong trường hợp một biến.
Tính: \({\left( {x - y} \right)}{\left( {x - y} \right)}\)
Giải thích vì sao ta có thể viết:
\(\left( {x + 2y} \right).\left( {2x - y} \right) = x.2x + y.\left( { - y} \right) + 2y.2x + 2y.\left( { - y} \right) = 2{x^2} - xy + 4xy - 2{y^2} = 2{x^2} + 3xy - 2{y^2}\)
Tính tích của hai đa thức \(G = {x^2} - 3y + 8\) và \(H = {y^2} - 2x\)
Trong phần Khởi động, hãy tính diện tích của phần được tô màu trong Hình 1.5 theo \(x\) và \(y\).
Thực hiện các phép tính sau:
a) \(\left( {x - 4} \right)\left( {{y^3} + 2y - 3} \right)\);
b) \(\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)\)
Thực hiện các phép nhân:
a) \(\left( {x + 3y} \right)\left( {x - 2y} \right)\);
b) \(\left( {2x - y} \right)\left( {y - 5x} \right)\);
c) \(\left( {2x - 5y} \right)\left( {{y^2} - 2xy} \right)\);
d) \(\left( {x - y} \right)\left( {{x^2} - xy - {y^2}} \right)\).
Thực hiện phép tính:
a) \(\left( {x - 2y} \right)\left( {{x^2}z + 2xyz + 4{y^2}z} \right)\)
b) \(\left( {{x^2} - \frac{1}{3}xy + \frac{1}{9}{y^2}} \right)\left( {x + \frac{1}{3}y} \right)\).
Tìm tích của hai đa thức:
a) \(2{x^4} - {x^3}y + 6x{y^3} + 2{y^4}\) và \({x^4} + 3{x^3}y - {y^4}\);
b) \({x^3}y + 0,4{x^2}{y^2} - x{y^3}\) và \(5{x^2} - 2,5xy + 5{y^2}\).
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến:
\(P = {x^4} - \left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right) - {y^4}\).
Rút gọn biểu thức:
a) \(\left( {x - y} \right)\left( {y + z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y - z} \right)\left( {z + x} \right) + \left( {x + y} \right)\left( {y + z} \right)\left( {z - x} \right)\);
b) \(\left( {2x + y} \right)\left( {2y + z} \right)\left( {2z + x} \right) - \left( {2x - y} \right)\left( {2y - z} \right)\left( {2z - x} \right)\).
Tích của một đa thức bậc 3 và một đa thức bậc 2 là một đa thức
A. bậc 5.
B. bậc 6.
C. bậc nhỏ hơn 5.
D. bậc lớn hơn 6.
Thu gọn các tích \(A = \left( {{x^2}y + x{y^2}} \right)\left( {{x^2} - xy + {y^2}} \right)\) và \(B = \left( {x - y} \right)\left( {{x^3}y + {x^2}{y^2} + x{y^3}} \right)\), ta được:
A. \(A = {x^4}y - x{y^4}\) và \(B = {x^4}y + x{y^4}\).
B. \(A = {x^4}y + x{y^4}\) và \(B = {x^4}y - x{y^4}\).
C. \(A = x{y^4} - {x^4}y\) và \(B = {x^4}y + x{y^4}\).
D. \(A = {x^4}y + x{y^4}\) và \(B = x{y^4} - {x^4}y\).
Thực hiện phép nhân
a) \(\frac{2}{5}{x^2}y\left( {5{x^2}y - 10x{y^2} + 2{y^3}} \right)\);
b) \(\left( {{x^2} - 2xy} \right)\left( {{x^3} + 3{x^2}y - 5x{y^2} - {y^3}} \right)\).
Một chiếc khăn trải bàn có dạng hình chữ nhật \(ABCD\) được thêu một họa tiết có dạng hình thoi \(MNPQ\) ở giữa với \(MP = x\left( {cm} \right);NQ = y\left( {cm} \right)\left( {x > y > 0} \right)\) như Hình 5. Viết đa thức biểu thị diện tích phần còn lại của chiếc khan trải bàn đó.
Làm tính nhân:
a) \(\left( {{x^2}\;-xy + 1} \right)\left( {xy + 3} \right)\).
b) \(\left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\).
Rút gọn biểu thức sau đây để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: \(\left( {x-5} \right)\left( {2x + 3} \right)-2x\left( {x-3} \right) + x + 7\).