Một trường trung học dự định tổ chức chuyến tham quan học tập thực tế cho học sinh khối 9 tại một bảo tàng và công viên khoa học (Science Park) trong 1 ngày (trong ngày từ 7h00 đến 17h00). Tổng kinh phí nhà trường dự trù là 20 triệu đồng, bao gồm chi phí thuê xe đưa đón và bữa ăn cho học sinh. Gọi \(x\) là số bạn có thể tham gia chuyến tham quan. (học sinh, \(x > 0\))
• Giá thuê xe là 5 triệu đồng/ngày.
• Vé vào cổng mỗi học sinh là 30 000 đồng.
• Bữa ăn trưa cho mỗi học sinh có giá 50 000 đồng.
a) Chi phí cho mỗi học sinh là 80 000 đồng.
b) Tổng chi phí nhà trường cần trả cho chuyến tham quan có \(x\) bạn là \(80\,000x\).
c) \(80\,000x + 5\,000\,000 \le 20\,000\,000\).
d) Trường có thể tổ chức cho tối đa 188 học sinh tham gia chuyến tham quan này.
a) Chi phí cho mỗi học sinh là 80 000 đồng.
b) Tổng chi phí nhà trường cần trả cho chuyến tham quan có \(x\) bạn là \(80\,000x\).
c) \(80\,000x + 5\,000\,000 \le 20\,000\,000\).
d) Trường có thể tổ chức cho tối đa 188 học sinh tham gia chuyến tham quan này.
Vì chuyến tham quan từ 7h00 đến 17h00, mỗi học sinh sẽ có chi phí vé vào cổng và bữa ăn trưa nên ta cần tính chi phí cho một học sinh đi tham quan.
Tổng chi phí nhà trường phải trả bao gồm chi phí cho \(x\) học sinh tham gia và chi phí thuê xe một ngày.
Vì tổng kinh phí nhà trường dự trù là 20 triệu đồng nên tổng chi phí không được quá 20 triệu đồng. Từ đó ta lập được bất phương trình.
Giải bất phương trình để tìm x.
a) Đúng
Vì chuyến tham quan từ 7h00 đến 17h00, mỗi học sinh sẽ có chi phí vé vào cổng và bữa ăn trưa nên chi phí cho một học sinh đi tham quan là:
30 000 + 50 000 = 80 000 (đồng)
b) Sai
Tổng chi phí nhà trường phải trả bao gồm chi phí cho \(x\) học sinh tham gia và chi phí thuê xe một ngày là:
80 000\(x\)+ 5 000 000 (đồng)
c) Đúng
Vì tổng kinh phí nhà trường dự trù là 20 triệu đồng nên ta có bất phương trình:
\(80\,000x + 5\,000\,000 \le 20\,000\,000\)
d) Sai
Giải bất phương trình:
\(80\,000x + 5\,000\,000 \le 20\,000\,000\)
\(80\,000x \le 15\,000\,000\) (cộng cả hai vế với \( - 5\,000\,000\))
\(x \le \frac{{15\,000\,000}}{{8\,000\,000}}\) (nhân cả hai vế với \(\frac{1}{{80\,000}}\))
\(x \le 187,5\)
Vì số học sinh phải là số nguyên nên số học sinh tối đa là 187.
Trường có thể tổ chức cho tối đa 187 học sinh tham gia chuyến tham quan này.
Đáp án a) Đ, b) S, c) Đ, d) S.
Các bài tập cùng chuyên đề
Với giá trị của m thì phương trình $x - 2 = 3m + 4$ có nghiệm lớn hơn 3:
Số nguyên nhỏ nhất thỏa mãn bất phương trình $\dfrac{{x + 4}}{5} - x + 5 < \dfrac{{x + 3}}{3} - \dfrac{{x - 2}}{2}$ là
Bất phương trình $2{(x + 2)^2} < 2x(x + 2) + 4$ có nghiệm là
Kết luận nào sau đây là đúng khi nói về nghiệm của bất phương trình $\;(x + 3)(x + 4) > (x - 2)(x + 9) + 25$.
Tìm $x$ để phân thức \(\dfrac{4}{{9 - 3x}}\) không âm.
Tìm \(x\) để biểu thức sau có giá trị dương $A = \dfrac{{x + 27}}{5} - \dfrac{{3x - 7}}{4}$
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị âm.
Tìm \(x\) để $P = \dfrac{{x - 3}}{{x + 1}}$ có giá trị lớn hơn \(1\).
Tìm số nguyên $x$ thỏa mãn cả hai bất phương trình:
\(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\)
Với những giá trị nào của $x$ thì giá trị của biểu thức \({(x + 1)^2} - 4\) không lớn hơn giá trị của biểu thức \({(x - 3)^2}\).
Số nguyên lớn nhất thỏa mãn bất phương trình \(\dfrac{{1987 - x}}{{15}} + \dfrac{{1988 - x}}{{16}} + \dfrac{{27 + x}}{{1999}} + \dfrac{{28 + x}}{{2000}} > 4\) là
Hãy chọn câu đúng. Bất phương trình \(2 + 5x \ge - 1 - x\) có nghiệm là:
Với giá trị của \(m\) thì phương trình \(x - 1 = 3m + 4\) có nghiệm lớn hơn \(2\):
Số nguyên lớn nhất thỏa mãn bất phương trình \(x - \dfrac{{x + 5}}{2} \le \dfrac{{x + 4}}{6} - \dfrac{{x - 2}}{2}\) là:
Bất phương trình \({\left( {x + 2} \right)^2} < x + {x^2} - 3\) có nghiệm là:
Giá trị của \(x\) để phân thức \(\dfrac{{12 - 4x}}{9}\) không âm là:
Giá trị của \(x\) để biểu thức sau có giá trị dương \(A = \dfrac{{ - x + 27}}{2} - \dfrac{{3x + 4}}{4}\) là:
Với điều kiện nào của \(x\) thì biểu thức \(B = \dfrac{{2x - 4}}{{3 - x}}\) nhận giá trị không âm?
Giá trị của \(x\) để biểu thức \(P = \dfrac{{x - 3}}{{x + 1}}\) có giá trị không lớn hơn \(1\).
Số các giá trị nguyên của \(x\) thỏa mãn cả hai bất phương trình: \(\dfrac{{x + 2}}{5} - \dfrac{{3x - 7}}{4} > - 5\) và \(\dfrac{{3x}}{5} - \dfrac{{x - 4}}{3} + \dfrac{{x + 2}}{6} > 6\) là:
Với những giá trị nào của \(x\) thì giá trị của biểu thức \({x^2} + 2x + 1\) lớn hơn giá trị của biểu thức \({x^2} - 6x + 13\).
Số nguyên nhỏ nhất thỏa mãn bất phương trình \(\dfrac{{2017 - x}}{{15}} + \dfrac{{2018 - x}}{{16}} + \dfrac{{17 + x}}{{2019}} + \dfrac{{18 + x}}{{2020}} \le 4\) là:
Xét bất phương trình \(5x + 3 < 0.\left( 1 \right)\)
Hãy thực hiện các yêu cầu sau để giải bất phương trình (1):
a) Sử dụng tính chất của bất đẳng thức, cộng vào hai vế của bất phương trình (1) với -3, ta được một bất phương trình, kí hiệu là (2).
b) Sử dụng tính chất của bất đẳng thức, nhân vào hai vế của bất phương trình (2) với \(\frac{1}{5}\) (tức là chia cả hai vế của bất phương trình (2) cho hệ số của x là 5) để tìm nghiệm của bất phương trình.
Giải các bất phương trình:
a) \(6x + 5 < 0;\)
b) \( - 2x - 7 > 0.\)
Giải các bất phương trình sau:
a) \(5x + 7 > 8x - 5;\)
b) \( - 4x + 3 \le 3x - 1.\)
Trong một cuộc thi tuyển dụng việc làm, ban tổ chức quy định mỗi người ứng tuyển phải trả lời 25 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi có sẵn bốn đáp án, trong đó chỉ có một đáp án đúng. Người ứng tuyển chọn đáp án đúng sẽ được cộng thêm 2 điểm, chọn đáp án sai bị trừ đi 1 điểm. Ở vòng sơ tuyển, ban tổ chức tặng cho mỗi người dự thi 5 điểm và theo quy định người ứng tuyển phải trả lời hết 25 câu hỏi; người nào có số điểm từ 25 điểm trở lên mới được dự thi vòng tiếp theo. Hỏi người ứng tuyển phải trả lời chính xác ít nhất bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được vào vòng tiếp theo?
Giải các bất phương trình sau:
a) \(x - 5 \ge 0;\)
b) \(x + 5 \le 0;\)
c) \( - 2x - 6 > 0;\)
d) \(4x - 12 < 0.\)
Giải các bất phương trình sau:
a) \(3x + 2 > 2x + 3;\)
b) \(5x + 4 < - 3x - 2.\)
Một ngân hàng đang áp dụng lãi suất gửi tiết kiệm kì hạn 1 tháng là 0,4%. Hỏi nếu muốn có số tiền lãi hàng tháng ít nhất là 3 triệu đồng thì số tiền gửi lãi tiết kiệm ít nhất là bao nhiêu (làm tròn đến triệu đồng)?
Một hãng taxi có giá mở cửa là 15 nghìn đồng và giá 12 nghìn đồng cho mỗi kilomet tiếp theo. Hỏi với 200 nghìn đồng thì hành khách có thể di chuyển được tối đa bao nhiêu kilomet (làm tròn đến hàng đơn vị)?