Đề bài

Cho \({a^2} + {b^2} + {c^2} = ab + bc + ca\;\) và \(a + b + c = 2022\). Tính \(a, b, c\).

Phương pháp giải

Do \({a^2} + {b^2} + {c^2} = ab + bc + ca\;\), suy ra \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} = 0\)

Mà bình phương của một số luôn lớn hơn hoặc bằng \(0\), nên để tổng bình phương các số bằng 0 thì mỗi số hạng phải bằng \(0\).

Suy ra, ta được \(a = b = c\), thay vào \(a + b + c = 2022\), ta tính được \(a, b, c\).

Lời giải của GV Loigiaihay.com

Ta có \({a^2} + {b^2} + {c^2} = ab + bc + ca\;\)

\(\begin{array}{*{20}{l}}\begin{array}{l}2{a^2} + 2{b^2} + 2c = 2ab + 2bc + 2ca\\2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\end{array}\\{{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {a - c} \right)}^2} = 0}\end{array}\)

Ta thấy \({\left( {a - b} \right)^2} \ge 0;\,{\left( {b - c} \right)^2} \ge 0;{\left( {a - c} \right)^2} \ge 0\).

Khi đó, \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} \ge 0\) thì \(\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {a - c} \right)^2} = 0\end{array} \right.\).

Suy ra \(a = b = c\)

Theo đề bài, ta có: \(a + b + c = 2022\).

Do đó \(a = b = c = \frac{{2022}}{3} = 674\).

Các bài tập cùng chuyên đề

Bài 1 :

Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).

Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)

Xem lời giải >>
Bài 2 :
  1. Khai triển \({\left( {2b + 1} \right)^2}\)
  2. Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.
Xem lời giải >>
Bài 3 :

Tính nhanh giá trị của biểu thức:

\({x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}}\) tại x=99,75.

Xem lời giải >>
Bài 4 :

Chứng minh đẳng thức \({\left( {10a + 5} \right)^2} = 100a\left( {a + 1} \right) + 25\). Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.

Áp dụng: Tính \({25^2};{35^2}\).

Xem lời giải >>
Bài 5 :

Biểu thức \(25{x^2} + 20xy + 4{y^2}\) viết dưới dạng bình phương của một tổng là:

A. \({\left[ {5x + \left( { - 2y} \right)} \right]^2}\)

B. \({\left[ {2x + \left( { - 5y} \right)} \right]^2}\)

C. \({\left( {2x + 5y} \right)^2}\)

D. \({\left( {5x + 2y} \right)^2}\).

Xem lời giải >>
Bài 6 :

Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách, hãy giải thích hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\).

Xem lời giải >>
Bài 7 :

Tính:

a) \({\left( {3x + 1} \right)^2}\)                                 

b) \({\left( {4x + 5y} \right)^2}\)                   

c) \({\left( {5x - \dfrac{1}{2}} \right)^2}\)                     

d) \({\left( { - x + 2{y^2}} \right)^2}\)

Xem lời giải >>
Bài 8 :

Diện tích của hình vuông MNPQ (hình 4) có thể được tính theo những cách nào?

 

Xem lời giải >>
Bài 9 :

Cho \(a\) và \(b\) là hai số thực bất kì.

1. Thực hiện phép tính \(\left( {a + b} \right)\left( {a + b} \right)\)

2. Hãy cho biết: \({\left( {a + b} \right)^2} = ?\)

Xem lời giải >>
Bài 10 :

Tính:

a)     \({\left( {a + 4} \right)^2}\);

b)    \({\left( {2u + 5v} \right)^2}\)

Xem lời giải >>
Bài 11 :

Viết các biểu thức sau dưới dạng bình phương của một tổng:

a) \(16{a^2} + 8a + 1\);

b) \({x^2} + 25{y^2} + 10xy\)

Xem lời giải >>
Bài 12 :

Tính nhanh: \( (0,76)^3 + (0,24)^3+3.0,76.0,24 \)

Xem lời giải >>
Bài 13 :

Biểu thức \({\left( {x - 2y} \right)^2}\)  bằng:

A. \({x^2} + 2xy + 2{y^2}\)

B. \({x^2} - 2xy + 2{y^2}\)

C. \({x^2} + 4xy + 4{y^2}\)

D. \({x^2} - 4xy + 4{y^2}\)

Xem lời giải >>
Bài 14 :

a) Biết số tự nhiên a chia 3 dư 2. Chứng minh \({a^2}\) chia 3 dư 1.

b) Biết số tự nhiên a chia 5 dư 3. Chứng minh \({a^2}\) chia 5 dư 4.

Xem lời giải >>
Bài 15 :

Chứng minh rằng với mọi số tự nhiên n, ta có:

\({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4.

Xem lời giải >>
Bài 16 :

Biết số tự nhiên a chia 3 dư 2. Chứng minh rằng \({a^2}\) chia 3 dư 1.

Xem lời giải >>
Bài 17 :

Biểu thức \({x^2} + x + \frac{1}{4}\) viết được dưới dạng bình phương của một tổng là

A.\({\left[ {x + \left( { - \frac{1}{2}} \right)} \right]^2}\).        

B.\({\left( {x + \frac{1}{2}} \right)^2}\).

C.\({\left( {2x + \frac{1}{2}} \right)^2}\)   

D.\({\left( {\frac{1}{2}x + 1} \right)^2}\)

Xem lời giải >>
Bài 18 :

Tính nhanh giá trị của biểu thức

\({x^2} + \frac{1}{2}x + \frac{1}{{16}}\) tại \(x = 99,75\).

Xem lời giải >>
Bài 19 :

Chứng minh đẳng thức \({\left( {10a + 5} \right)^2}\; = 100a\left( {a + 1} \right) + 25\). Từ đó, em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.

Áp dụng: Tính \({25^2},{35^2}\).

Xem lời giải >>
Bài 20 :

Biểu thức \(25{x^2}\; + 20xy + 4{y^2}\) viết dưới dạng bình phương của một tổng là:

A. \({\left[ {5x\; + \;\left( { - 2y} \right)} \right]^2}\).

B. \({\left[ {2x\; + \;\left( { - 5y} \right)} \right]^2}\).

C. \({\left( {2x + 5y} \right)^2}\).

D. \({\left( {5x + 2y} \right)^2}\).

Xem lời giải >>
Bài 21 :

Sử dụng Hình 2.3, bằng cách tính diện tích hình vuông ABCD theo hai cách, hãy giải thích hằng đẳng thức \({\left( {a + b} \right)^2}\; = {a^2}\; + 2ab + {b^2}\).

 

Xem lời giải >>
Bài 22 :

Khai triển \((3x+2)^2\) ta được

Xem lời giải >>
Bài 23 :

Chọn câu đúng:

Xem lời giải >>
Bài 24 :

Khai triển \({\left( {3x + 4y} \right)^2}\), ta được:

Xem lời giải >>
Bài 25 :

Điền vào chỗ trống sau: \({\left( {x + 2} \right)^2} = {x^2} + ... + 4\)

Xem lời giải >>