Đề bài

Cho hàm số f(x) xác định trên R có bảng biến thiên như sau:

a) Hàm số f(x) đồng biến trên mỗi khoảng (0;2) và (2;3)

Đúng
Sai

b) Số điểm cực trị của hàm số đã cho là 5

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất bằng 3

Đúng
Sai

d) Đồ thị hàm số không có đường tiệm cận

Đúng
Sai
Đáp án

a) Hàm số f(x) đồng biến trên mỗi khoảng (0;2) và (2;3)

Đúng
Sai

b) Số điểm cực trị của hàm số đã cho là 5

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất bằng 3

Đúng
Sai

d) Đồ thị hàm số không có đường tiệm cận

Đúng
Sai
Phương pháp giải

Quan sát đồ bảng biến thiên và nhận xét.

Lời giải của GV Loigiaihay.com

a) Sai. Hàm số f(x) nghịch biên trên (0;2) và đồng biến (2;3).

b) Sai. Số điểm cực trị của hàm số đã cho là 3 (x = 0, x = 2, x = 3).

c) Đúng. Hàm số f(x) có giá trị lớn nhất bằng 3.

d) Đúng. Đồ thị hàm số liên tục trên  và không có tiệm cận.

Các bài tập cùng chuyên đề

Bài 1 :

Đồ thị của đạo hàm bậc nhất \(y = f'\left( x \right)\) của hàm số f(x) được cho trong Hình 1.13:
a) Hàm số f(x) đồng biến trên những khoảng nào? Giải thích.
b) Tại giá trị nào của x thì f(x) có cực đại hoặc cực tiểu? Giải thích.

Xem lời giải >>
Bài 2 :

Cho hàm số \(y = 3{x^4} + 2\left( {m - 2018} \right){x^2} + 2017\) với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có một góc bằng \({120^0}\).

Xem lời giải >>
Bài 3 :

Cho hàm số $y = {x^4} - 2m{x^2} + {m^2} + m.$ Tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành tam giác có một góc ${120^o}$ là:

Xem lời giải >>
Bài 4 :

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

A. \(y =  - {x^3} + 3{x^2} + 1\).

B. \(y = {x^3} - 3{x^2} + 3\).

C. \(y =  - {x^2} + 2x + 1\).

D. \(y = \frac{{x + 1}}{{x - 1}}\).

 
Xem lời giải >>
Bài 5 :

Cho hai hàm số \(y = f\left( x \right),y = g\left( x \right)\) có đồ thị hàm số lần lượt ở Hình 6a, Hình 6b. Nêu khoảng đồng biến, nghịch biến và điểm cực trị của mỗi hàm số đó.

Xem lời giải >>
Bài 6 :

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 11.

 
Xem lời giải >>
Bài 7 :

Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:
a) \(y = 4{x^3} + 3{x^2}--36x + 6\)
b) \(y = \frac{{{x^2} - 2x - 7}}{{x - 4}}\)

 
Xem lời giải >>
Bài 8 :

Đạo hàm f'(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).

 
Xem lời giải >>
Bài 9 :

Hình bên là đồ thị của hàm số f’(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

Xem lời giải >>
Bài 10 :

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và đạo hàm \(f'\left( x \right)\) có đồ thị như hình bên. Sử dụng đồ thị của hàm số \(y = f'\left( x \right)\), hãy cho biết:

a) Các khoảng đồng biến, khoảng nghịch biến của hàm số \(f\left( x \right)\);

b) Hàm số \(f\left( x \right)\) có cực đại, cực tiểu không? Nếu có, hãy cho biết các điểm cực trị tương ứng.

Xem lời giải >>
Bài 11 :

Tìm các khoảng đồng biến, khoảng nghịch biến và cực trị (nếu có) của các hàm số sau:

a) \(y = {x^3} - 9{x^2} - 48x + 52\);

b) \(y =  - {x^3} + 6{x^2} + 9\).

Xem lời giải >>
Bài 12 :

Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau:

a) \(y = x + \frac{1}{x}\);

b) \(y = \frac{x}{{{x^2} + 1}}\).

Xem lời giải >>
Bài 13 :

Tìm các khoảng đơn điệu và các cực trị (nếu có) của các hàm số sau:

a) \(y = {x^4} - 2{x^2} + 3\);

b) \(y = {x^2}\ln x\).

Xem lời giải >>
Bài 14 :

Chứng minh rằng hàm số \(f\left( x \right) = \sqrt[3]{{{x^2}}}\) không có đạo hàm tại \(x = 0\) nhưng có cực tiểu tại điểm \(x = 0\).

Xem lời giải >>
Bài 15 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) =  - x\left( {2x - 5} \right),\forall x \in \mathbb{R}\). Khẳng định nào dưới đây đúng?

A. \(f\left( { - 2} \right) < f\left( { - 1} \right)\).                                

B. \(f\left( 0 \right) > f\left( 2 \right)\).           

C. \(f\left( 3 \right) > f\left( 5 \right)\).          

D. \(f\left( 3 \right) > f\left( 2 \right)\).

Xem lời giải >>
Bài 16 :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là:

A. 4.

B. 3.

C. 2.

D. 1.

Xem lời giải >>
Bài 17 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = {2^{{x^2} - 1}}\).
a) \(y' = \left( {{x^2} - 1} \right){.2^{{x^2} - 2}}\).
b) \(y' = 0\) khi \(x = - 1,x = 1\).
c) \(y\left( { - 2} \right) = 8,y\left( { - 1} \right) = 1,y\left( 1 \right) = 1\).
d) Trên đoạn \(\left[ { - 2;1} \right]\), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

Xem lời giải >>
Bài 18 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = {x^3} - 3{\rm{x}} + 2\).
a) \(y' = 3{{\rm{x}}^2} - 3\).
b) \(y' = 0\) khi \(x = - 1,x = 1\).
c) \(y' > 0\) khi \(x \in \left( { - 1;1} \right)\) và \(y' < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).
d) Giá trị cực đại của hàm số là ${{f}_{C}}=0$.

Xem lời giải >>
Bài 19 :

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.

Xem lời giải >>
Bài 20 :

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 8.

a) \(f'\left( x \right) = 0\) khi \(x = 0,x = 1,x = 3\).

b) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

c) \(f'\left( x \right) > 0\) khi \(x \in \left( {0;3} \right)\).

d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;3} \right)\).

Xem lời giải >>
Bài 21 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y =  - {x^3} - 3{x^2} + 24x - 1\);

b) \(y = {x^3} - 8{x^2} + 5x + 2\);

c) \(y = {x^3} + 2{x^2} + 3x + 1\);

d) \(y =  - 3{x^3} + 3{x^2} - x + 2\).

Xem lời giải >>
Bài 22 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\);

b) \(y = \frac{{2{\rm{x}} - 5}}{{3{\rm{x}} + 1}}\);

c) \(y = \sqrt {4 - {x^2}} \);

d) \(y = x - \ln {\rm{x}}\).

Xem lời giải >>
Bài 23 :

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = \frac{{{x^2} + 8}}{{x + 1}}\);

b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\);

c) \(y = \frac{{ - 2{x^2} + x + 2}}{{2x - 1}}\);

d) \(y = \frac{{ - {x^2} - 6x - 25}}{{x + 3}}\).

Xem lời giải >>
Bài 24 :

Đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số \(y = f\left( x \right)\).

Xem lời giải >>
Bài 25 :

Chứng minh rằng

a) \(\tan x > x\) với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\);

b) \(\ln x \le x - 1\) với mọi \(x > 0\).

Xem lời giải >>
Bài 26 :

Chứng minh rằng:

a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm.

b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.

Xem lời giải >>
Bài 27 :

Tìm \(m\) để phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt.

Xem lời giải >>
Bài 28 :

Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2.

Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là

A. \(x =  - 3\).

B. \(x =  - 1\).

C. \(x = 0\).

D. \(x = 1\).

Xem lời giải >>
Bài 29 :

Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 3.

Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng

A. \(\left( { - 4; - 2} \right)\) và \(\left( { - 2;2} \right)\).

B. \(\left( { - 2;0} \right)\).

C. \(\left( { - 4; - 3} \right)\) và \(\left( { - 1;2} \right)\).

D. \(\left( { - 3; - 1} \right)\) và \(\left( {1;2} \right)\).

Xem lời giải >>
Bài 30 :

Cho hàm số \(y = f\left( x \right) = \frac{{m + 2}}{3}{x^3} + 2{x^2} + \left( {m + 2} \right)x + 1\) (\(m\) là tham số).

Tìm \(m\) để đồ thị hàm số không có cực trị.

Xem lời giải >>