Cho \(a\) và \(b\) là hai số thực bất kì.
a) Thực hiện phép tính \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
b) \({a^3} - {b^3} = ?\)
1. Ta nhân đa thức với đa thức: Lấy từng hạng tử của đa thức này nhân với từng hạng tử của đa thức kia.
2. Dựa vào kết quả từ ý 1.
1. \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) = {a^3} + {a^2}b + a{b^2} - {a^2}b - a{b^2} - {b^3} = {a^3} - {b^3}.\)
2. \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Các bài tập cùng chuyên đề
Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).
Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.
a) Tính \(\left( {a - 4} \right)\left( {{a^2} + 4a + 16} \right).\)
b) Viết \(64{x^3} - 27{y^3}\) dưới dạng tích.
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
Đa thức \(8{x^3} - 27{y^3}\) được viết thành tích của hai đa thức:
A. \(2x + 3y\) và \(4{x^2} - 6xy + 9{y^2}\).
B. \(2x + 3y\) và \(4{x^2} + 6xy + 9{y^2}\).
C. \(2x-3y\) và \(4{x^2} - 6xy + 9{y^2}\).
D. \(2x-3y\) và \(4{x^2} + 6xy + 9{y^2}\).
Vế phải của hằng đẳng thức: \(x^3−y^3=....\) là:
Biểu thức \(8x^3−\frac{1}{8}\) bằng
Biểu thức \(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right)\) là dạng phân tích đa thức thành nhân tử của đa thức
Cho đa thức P thỏa mãn \(\left( {x - 1} \right)P = {x^3} - 1\). Khi đó đa thức P là