a) Nhiệt độ cơ thể d (∘C)(∘C) của bệnh nhân theo thời gian h (giờ) trong ngày được ghi trong bảng sau:
Ứng với mỗi giờ em đọc được bao nhiêu số chỉ nhiệt độ?
b) Thời gian tt (giờ) để một vật chuyển động đều đi hết quãng đường 180 km tỉ lệ nghịch với vận tốc vv (km/h) của nó theo công thức t=180vt=180v.
Tính và lập bảng các giá trị tương ứng của tt và vv lần lượt bằng 10; 20; 30; 60; 180.
Ứng với mỗi giá trị của đại lượng vv em tính được bao nhiêu giá trị của đại lượng tt?
a) Quan sát và đọc bảng số liệu.
b) Tính toán các giá trị bằng cách thay vào công thức sau đó kẻ bảng với các gá trị tìm được.
a) Ứng với mỗi giờ chỉ đọc được một số chỉ nhiệt độ.
Ứng với 7h thì nhiệt độ là 36∘C36∘C
Ứng với 8h thì nhiệt độ là 37∘C37∘C
Ứng với 9h thì nhiệt độ là 36∘C36∘C
Ứng với 10h thì nhiệt độ là 37∘C37∘C
Ứng với 11h thì nhiệt độ là 38∘C38∘C
Ứng với 12h thì nhiệt độ là 37∘C37∘C
Ứng với 13h thì nhiệt độ là 38∘C38∘C
Ứng với 14h thì nhiệt độ là 39∘C39∘C
Ứng với 15h thì nhiệt độ là 39∘C39∘C
b) Với v=10⇒t=18010=18v=10⇒t=18010=18
Với v=20⇒t=18020=9v=20⇒t=18020=9
Với v=30⇒t=18030=6v=30⇒t=18030=6
Với v=60⇒t=18060=3v=60⇒t=18060=3
Với v=180⇒t=180180=1v=180⇒t=180180=1
Lập bảng:
vv |
10 |
20 |
30 |
60 |
180 |
tt |
18 |
9 |
6 |
3 |
1 |
Các bài tập cùng chuyên đề
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.
Chọn đáp án đúng
Cho hàm số y=f(x)=kxy=f(x)=kx (k là hằng số, k≠0k≠0). Chọn đáp án đúng.
Cho hai hàm số: f(x)=−6x2+12x−7,g(x)=3x2+6x+4f(x)=−6x2+12x−7,g(x)=3x2+6x+4
Khẳng định nào sau đây là đúng?
Số liệu về lượng mưa M (mm) trong 7 tháng mùa mưa của thành phố Đà Lạt năm 2020 được biểu diễn theo số n chỉ số trong tháng có biểu đồ dưới đây.
Quan sát biểu đồ và cho biết lượng mưa ở mỗi tháng là bao nhiêu?
Mô tả các đại lượng là hàm số và biến số trong các mô hình sau:
a) Biểu đồ cột chỉ doanh thu yy (triệu đồng) của một cửa hàng trong các tháng xx.
b) Quãng đường ss (km) đi được trong khoảng thời gian tt (giờ) của một chiếc xe chạy với tốc độ không đổi bằng 40 km/h.
c) Số tiền yy (đồng) người mua phải trả cho xx quyển vở có giá trị 10 000 đồng/ quyển.
Khi đo nhiệt độ, ta có công thức đổi từ đơn vị độ C (Celsius) sang đơn vị độ F (Fahrenheit) như sau: F = 1,8C + 3,2. Theo em, F có phải làm một hàm số theo biến số C hay không? Giải thích.
a) Các giá trị tương ứng của hai đại lượng xx và yy được cho trong bảng sau:
Đại lượng yy có phải là hàm số của đại lượng xx không?
b) Cho hàm số y=f(x)=x2y=f(x)=x2
- Tính f(2);f(−3)f(2);f(−3).
- Lập bảng giá trị của hàm số với xx lần lượt bằng −3;−2;−1;0;1;2;3−3;−2;−1;0;1;2;3.
Cho C=f(d)C=f(d)là hàm số mô tả mối quan hệ giữa chu vi CC và đường kính dd của một đường tròn. Tìm công thức f(d)f(d) và lập bảng giá trị của hàm số ứng với dd lần lượt bằng 1;2;3;41;2;3;4 (theo đơn vị cm).
Các giá trị tương ứng của hai đại lượng xx và yy được cho trong bảng sau. Trong mỗi trường hợp, hãy cho biết đại lượng yy có phải là hàm số của đại lượng xx không? Giải thích.
Cho hàm số y=f(x)=3xy=f(x)=3x
a) Tính f(1);f(−2);f(13)f(1);f(−2);f(13).
b) Lập bảng các giá trị tương ứng của yy khi xx lần lượt nhận các giá trị:
−3;−2;−1;0;1;2;3−3;−2;−1;0;1;2;3.
Cho hàm số y=f(x)=x2+4y=f(x)=x2+4. Tính f(−3);f(−2);f(−1);f(0);f(1)f(−3);f(−2);f(−1);f(0);f(1)
Khối lượng m (g) của một thanh sắt có khối lượng riêng là 7,8 kg/dm3 tỉ lệ thuận với thể tích V (cm3) theo công thức m = 7,8V. Đại lượng m có phải là hàm số của đại lượng V không? Nếu có, tính m(10); m(20); m(40); m(50).
Thời gian tt(giờ) của một vật chuyển động đều trên quãng đường 20 km tỉ lệ nghịch với tốc độ vv (km/h) của nó theo công thức t=20vt=20v. Tính và lập bảng các giá trị tương ứng của tt với vv lần lượt nhận các giá trị 10; 20; 40; 80.
Thanh long là một loại cậy chịu hạn không kén đất, rất thích hợp với điều kiện khí hậu và thổ nhưỡng của tỉnh Bình Thuận. Giá bán 1 kg thanh long ruột đỏ loại I là 32 000 đồng. Với mỗi lượng thanh long loại I được bán ra, người bán sẽ thu được một số tiền tương ứng.
Mối liên hệ giữa hai đại lượng số kilôgam thanh long được bán ra và số tiền người bán thu được thể hiện khái niệm nào trong toán học?
Chu vi y (cm) của hình vuông có độ dài cạnh x (cm) được tính theo công thức y = 4x. Với mỗi giá trị của x, xác định được bao nhiêu giá trị tương ứng của y?
Trong tình huống ở phần mở đầu, hãy cho biết:
a) Số tiền người bán thu được khi lần lượt bán 2 kg thanh long; 3 kg thanh long.
b) Gọi y (đồng) là số tiền người bán thu được khi bán x (kg) thanh long. Với mỗi giá trị của x, ta xác định được bao nhiêu giá trị tương ứng của y.
Cho hai ví dụ về hàm số
Một xe ô tô chạy với tốc độ 60 km/h trong thời gian t (h).
a) Viết hàm số biểu thị quãng đường S(t) (km) mà ô tô đi được trong thời gian t (h).
b) Tính quãng đường S(t) (km) mà ô tô đi được trong thời gian t = 2 (h); t = 3 (h).
Cho hàm số: f(x)=−5x+3f(x)=−5x+3. Tính f(0);f(−1);f(12)f(0);f(−1);f(12)
Đại lượng y có phải là hàm số của đại lượng x hay không nếu bảng giá trị tương ứng của chúng được cho bởi mỗi trường hợp sau:
a)
x |
1 |
2 |
3 |
4 |
5 |
6 |
y |
-2 |
-2 |
-2 |
-2 |
-2 |
-2 |
b)
x |
1 |
2 |
3 |
4 |
1 |
5 |
y |
-2 |
-3 |
-4 |
-5 |
-6 |
-7 |
a) Cho hàm số y = 2x + 10. Tìm giá trị của y tương ứng với mỗi giá trị sau của x:
x = -5; x = 0; x = 1212
b) Cho hàm số y = -2x2 + 1. Tìm giá trị của y tương ứng với mỗi giá trị sau của x:
x = -1; x = 0; x = 1; x = 1313
Cho một thanh kim loại đồng chất có khối lượng riêng 7,8 g/cm3.
a) Viết công thức tính khối lượng m (g) theo thể tích V (cm3). Hỏi m có phải là hàm số của V hay không? Vì sao?
b) Tính khối lượng của thanh kim loại đó khi biết thể tích của thanh kim loại đó là V = 1000 cm3.
Dừa sáp là một trong những đặc sản lạ, quý hiếm và có giá trị dinh dưỡng cao, thường được trồng ở Bến Tre hoặc Trà Vinh. Giá bán mỗi quả dừa sáp là 200 000 đồng.
a) Viết công thức biểu thị số tiền y (đồng) mà người mua phải trả khi mua x (quả) dừa sáp. Hỏi y có phải là hàm số của x hay không? Vì sao?
b) Hãy tính số tiền mà người mua phải trả khi mua 10 quả dừa sáp.
Bác Ninh gửi tiết kiệm 10 triệu đồng ở ngân hàng với kì hạn 12 tháng và không rút tiền trước kì hạn. Lãi suất ngân hàng quy định cho kì hạn 12 tháng là r%/năm.
a) Viết công thức biểu thị số tiền lãi y (đồng) theo lãi suất r%/năm mà bác Ninh nhận được sau khi hết kì hạn 12 tháng. Hỏi y có phải là hàm số của r hay không? Vì sao?
b) Tính số tiền lãi mà bác Ninh nhận được khi hết kì hạn 12 tháng, biết r = 5,6.
Thống kê nhiệt độ T(∘C)T(∘C) tại một địa điểm thuộc vùng ôn đới ở một số thời điểm t(h)t(h) trong một ngày được cho bởi bảng sau:
a) Trong các thời điểm trong bảng trên, thời điểm nào có nhiệt độ cao nhất? Thấp nhất?
b) Nhiệt độ TT có phải hàm số của thời điểm tt hay không? Vì sao?
c) Thời điểm tt có phải hàm số của nhiệt độ TT hay không? Vì sao?
Một hòn đá rơi xuống hang với quãng đường rơi xuống h(m)h(m) trong thời gian tt (giây) được tính bởi công thức h=4,9t2.h=4,9t2. Hỏi hh có phải hàm số của tt hay không? Vì sao?
Giá của chiếc máy tính bảng lúc mới mua là 98000009800000 đồng. Giá trị của chiếc máy tính bảng đó sau khi sử dụng xx (năm) được tính bởi công thức:
V(x)=9800000−800000xV(x)=9800000−800000x.
a) Hỏi V(x)V(x) có phải là hàm số của xx hay không? Vì sao?
b) Tính V(3)V(3) và cho biết V(3)V(3) có nghĩa là gì.
c) Sau bao nhiêu năm thì giá trị của chiếc máy tính bảng đó là 50000005000000 đồng?
Cho hàm số f(x)=x3−2.f(x)=x3−2. Tìm số thích hợp cho ? trong bảng sau:
Cho hàm số f(x)=2−3x.f(x)=2−3x. Trong các phát biểu sau, phát biểu nào đúng?
a) f(−1)=5.f(−1)=5.
b) f(0)=−3.f(0)=−3.
c) f(13)=−1.f(13)=−1.
d) f(−13)=3.
Cho hàm số g(x)=5x2+7. Bạn Bình nhận định: Luôn tìm được hai số a và b sao cho a<b mà g(a)>g(b). Nhận định của bạn Bình đúng hay sai? Vì sao?