Có bao nhiêu cặp số nguyên \(\left( {x;y} \right)\) thỏa mãn \(\dfrac{x}{5} = \dfrac{3}{y}\) và \(x > y?\)
-
A.
\(4\)
-
B.
\(3\)
-
C.
\(2\)
-
D.
\(1\)
Sử dụng kiến thức:
Hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) gọi là bằng nhau nếu \(a.d = b.c\) (tích chéo bằng nhau)
Ta có: \(\dfrac{x}{5} = \dfrac{3}{y}\)\( \Rightarrow x.y = 5.3 = 15\)
Mà \(15 = 5.3 = 15.1 = \left( { - 3} \right).\left( { - 5} \right) = \left( { - 1} \right).\left( { - 15} \right)\) và \(x,y \in Z,x > y\) nên \(\left( {x;y} \right) \in \left\{ {\left( {5;3} \right),\left( {15;1} \right),\left( { - 3; - 5} \right),\left( { - 1; - 15} \right)} \right\}\)
Đáp án : A
Các bài tập cùng chuyên đề
Viết phân số âm năm phần tám.
Trong các cách viết sau đây, cách viết nào cho ta phân số:
Phần tô màu trong hình sau biểu diễn phân số nào?
Hãy viết phép chia sau đưới dạng phân số: $\left( { - 58} \right):73$
Phần tô màu trong hình sau biểu diễn phân số nào?
Phân số nào dưới đây bằng với phân số \(\dfrac{{ - 2}}{5}?\)
Chọn câu sai?
Tìm số nguyên \(x\) biết \(\dfrac{{35}}{{15}} = \dfrac{x}{3}?\)
Điền số thích hợp vào chỗ chấm $\dfrac{{15}}{{90}} = \dfrac{5}{{...}}$
Cho tập \(A = \left\{ {1; - 2;3;4} \right\}\). Có bao nhiêu phân số có tử số và mẫu số thuộc \(A\) mà có tử số khác mẫu số và tử số trái dấu với mẫu số?
Viết \(20\,d{m^2}\) dưới dạng phân số với đơn vị là mét vuông.
Cho biểu thức \(C = \dfrac{{11}}{{2n + 1}}\) . Tìm tất cả các giá trị của $n$ nguyên để giá trị của $C$ là một số tự nhiên.
Có bao nhiêu giá trị nguyên dương của \(n\) để \(\dfrac{9}{{4n + 1}}\) đạt giá trị nguyên.
Tổng các số \(a;b;c\) thỏa mãn \(\dfrac{6}{9} = \dfrac{{12}}{a} = \dfrac{b}{{ - 54}} = \dfrac{{ - 738}}{c}\) là:
Cho các phân số: \(\dfrac{{15}}{{60}};\dfrac{{ - 7}}{5};\dfrac{6}{{15}};\dfrac{{28}}{{ - 20}};\dfrac{3}{{12}}\)
Số cặp phân số bằng nhau trong những phân số trên là:
Tính tổng các giá trị \(x \in Z\) biết rằng \( - \dfrac{{111}}{{37}} < x < \dfrac{{91}}{{13}}.\)
Tìm tập hợp các số nguyên \(n\) để \(A = \dfrac{{3n - 5}}{{n + 4}}\) có giá trị là số nguyên.
Tìm \(x;y\) biết \(\dfrac{{x - 4}}{{y - 3}} = \dfrac{4}{3}\) và \(x - y = 5.\)
Tìm số nguyên \(x\) biết rằng \(\dfrac{x}{3} = \dfrac{{27}}{x}\) và \(x < 0.\)
Quy đồng mẫu hai phân số \(\dfrac{3}{4}\) và \(\dfrac{4}{5}\) ta được kết quả là